

High-resolution angle sensing

Brushless motor commutation

Incremental or absolute rotary

APPLICATIONS

(2...64 poles)

encoders

Servo motor control

Rev B4, Page 1/55

FEATURES

- TMR-based absolute angle sensor over 360°
- High operating distance and axial play tolerance
- Automatic signal error correction
- ♦ Rotation speed up to 360,000 rpm
- ♦ FlexCount[®] ABZ output from 1 up to 65536 AB cycles
- Adjustable zero position and length
- AB output frequency up to 12.5 MHz
- Outstanding AB jitter performance (e.g. ±2% at 2500 cpr)
- UVW output at 1 up to 32 cpr, adjustable rotor angle
- Bidirectional open-source BiSS Interface, profile compatible
- ♦ High angle resolution (24-bit ST)
- ♦ 24-bit revolution counting
- ♦ High accuracy (INL ±0.15°) and repeatability (0.04°)
- ♦ Ultra-low output lag of 1.5 µs
- Configurable status monitoring for alarm output
- ♦ 20 MHz SPI interface
- Internal EEPROM
- Single 3.3 V supply, low power consumption (typ. 30 mA)
- ♦ Operating temperature range of -40 to +125 °C

Rev B4, Page 2/55

Haus

DESCRIPTION

The iC-TW39 is a very compact TMR-based system-on-chip solution for 360-degree absolute angle sensing in the end-of-shaft position. The sensor tracks the magnetic field direction only in the X-Y chip plane, with reasonable placement tolerances of the IC, especially for the operating distance to the diametrical magnet. Therefore, an axial play of the motor shaft can be tolerated without significant impact on angular accuracy.

The sensor signal is resolved by a high-resolution interpolator, featuring resolution-enhancing digital filtering and automatic signal error correction. The device ensures minimal angular error, excellent position jitter even at low speeds, and unmatched position noise at standstill.

The fast data processing refreshes the absolute angle position every 20 ns for immediate output via BiSS, SSI or SPI.

Additionally, incremental ABZ quadrature signals are provided with FlexCount[®] resolution of 1 up to 65536 cycles per revolution, with an adjustable Z position and length. The incremental outputs can also provide UVW commutation signals for 1 to 32 pole-pair motors, alternatively.

The iC-TW39 can be configured via SPI or the bidirectional BiSS Interface, which supports encoder profiles 3 and 3S, simplifying BiSS master connection.

Extensive status and signal quality monitoring capabilities allow detection and notification of poor operating conditions, as well as drive monitoring for predictive maintenance.

The iC-TW39 requires minimal external components for operation. An EEPROM for storage of configuration and calibration data is already integrated on-chip.

Adding external RS-422 line drivers/receivers allows extended cabling for BiSS and incremental applications with encoder quadrature outputs.

General notice on application-specific programming

Parameters defined in the datasheet represent supplier's attentive tests and validations, but - by principle - do not imply any warranty or guarantee as to their accuracy, completeness or correctness under all application conditions. In particular, setup conditions, register settings and power-up have to be thoroughly validated by the user within his specific application environment and requirements (system responsibility).

The chip's performance in application is impacted by system conditions like the quality of the magnetic target, field strength and stray fields, temperature and mechanical stress, sensor alignment and initial calibration.

iC-TW39 24-BIT MAGNETIC ON-AXIS ANGLE SENSOR

preliminary CHaus

Rev B4, Page 3/55

CONTENTS

PACKAGING INFORMATION PIN CONFIGURATION	5
QFN32 5 mm x 5 mm (top view) PACKAGE DIMENSIONS QFN32 5 mm x 5 mm	5 6
ABSOLUTE MAXIMUM RATINGS	7
THERMAL DATA	7
ELECTRICAL CHARACTERISTICS	8
OPERATING REQUIREMENTS	11
	11
	12
SPI Interface	13
ELECTRICAL CONNECTIONS	14
Power and Ground	14
	14
	14
	14
NERR	15
SPI Port	15
Reserved Pins	15
DEVICE FUNCTIONS	16
Output Modes	17
ANGLE PROCESSOR	18
Startup	18
ABZ OUTPUT	20
ABZ Output Configuration	20
UVW OUTPUT	22
UVW Output Configuration	22
ABZ+UVW OUTPUT	23
	20
BISS/SSI INTERFACE	24
BISS/SSI INTERFACE BISS Communication	24 24
BISS/SSI INTERFACE BISS Communication	24 24 24
BISS/SSI INTERFACE BISS Communication	24 24 24 24 24
BISS/SSI INTERFACE BISS Communication SSI Communication Interface Configuration Position Preset	24 24 24 24 24 26
BISS/SSI INTERFACE BISS Communication	24 24 24 24 26 26
BiSS/SSI INTERFACE BiSS Communication	24 24 24 24 26 26 26
BiSS/SSI INTERFACE BiSS Communication	24 24 24 26 26 26 26
BiSS/SSI INTERFACE BiSS Communication	24 24 24 24 26 26 26 26 26
BiSS/SSI INTERFACE BiSS Communication	24 24 24 24 26 26 26 26 26 26 28 28

Register Write Protection	28
331 Mode	20
BISS ELECTRONIC DATA SHEET EDS Register Entries	29 29
BISS PASSTHROUGH MODE	31
ABSOLUTE DATA INTERFACE (ADI)	33
ADI Setup	34
ADI Data Processing	34
Application Examples	35
THE COMMAND REGISTER	36
AUTO CALIBRATION AND ANGLE ERROR	07
Correction Broadura	31 27
	31
	31
Pin-Inggered Auto Calibration (NCLB pin)	31
	30
	38
EXCESSIVE ERROR AND ADAPTION	~~~
MONITOR	39
	39
	40
	40
	40
	40
STATUS/FAULT MONITOR	42
Status Register	42
Latched Status Register	43
Fatal Status Register	44
Status Control	44
Watchdog	44
Status Evaluation and Action Masking	45
Evaluation of I/O pin NERR	45
Action Masking	45
DEVICE IDENTIFICATION	46
EEPROM	46
PROGRAMMER'S REFERENCE – REGISTER MAP	47
PROGRAMMER'S REFERENCE – SPI	
	49
SPI Command Packet Formats	50

Rev B4, Page 4/55

Haus

SPI Control Word	50
Null Write (Read Only)	51
Register Write	51
Response Packet Formats	51
SPI Status Byte	51

Position Read . Register Read	•				•			•	•		•	•	•	•		51 51
DESIGN REVIEW: Function Notes											52					
REVISION HISTOR	۲Y	,														53

preliminary **iC-TW39** 24-BIT MAGNETIC ON-AXIS ANGLE SENSOR

Rev B4, Page 5/55

aus

PACKAGING INFORMATION

PIN CONFIGURATION QFN32 5 mm x 5 mm (top view)

PIN FUNCTIONS

No. Name Function

- 1 VREF¹ ADC Reference Output
- 2 VC¹ Bias Output (VDD/2)
- 3 reserved ³
- 4 reserved ³
- 5 NPRE⁴
- **BiSS Position Preset Input** 6 NRST⁴ Reset Input (low active)
- 7 NCLB⁴ Auto-Calib. Input (low active)
- 8 NERR⁴ Error Output (low active)

PIN FUNCTIONS No. Name Function

9 10 11 12 13 14 15 16	Z/W SLI GND1 B/V SLO VDD1 A/U MAI	Incremental Output BiSS Interface, Data Input Digital Ground Incremental Output, or MTDAT BiSS Interface, Data Output +3.3 V Digital Supply Input Incremental Output, or MTCLK BiSS Interface, Clock Input
17 18	VDD2 n.c. ²	+3.3 V Digital Supply Input
19	GND2	Digital Ground
20	SO ⁵	SPI Slave Output (Master Input)
21	SI ⁵	SPI Slave Input (Master Output)
22	SCLK ⁵	SPI Clock Input
23	NCS ⁴	SPI Slave Select Input (low active)
24	reserved ⁶	

- 25 n.c.
- 26 n.c.
- 27 AVDD +3.3 V Analog Supply Input
- 28 reserved⁷
- 29 n.c.
- 30 AGND Analog Ground
- 31 reserved⁷
- 32 n.c.
 - BP⁸ Backside Paddle

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes), <D-CODE> = date code (subject to changes); ¹ Pin must be decoupled with 100 nF to AGND. Do not inject noise.

² n.c. – pin is not connected.

³ Pin must be connected to ground.

⁴ Connect to +3.3 V via 10 kΩ resistor if not used. Do not allow to float.

 5 Connect to ground via 10 k Ω resistor if not used. Do not allow to float.

⁶ Pin must be connected to +3.3 V.

⁷ Do not wire this pin.

⁸ Must be connected to a ground plane at AGND potential. Can also be used to connect GND1 and GND2.

Rev B4, Page 6/55

Haus

All dimensions given in mm.

i

General tolerances of form and position according to JEDEC MO-220.

Tolerance of sensor pattern: ± 0.10 mm / $\pm 1^{\circ}$ (with respect to center of backside pad).

drb_qfn32-5x5-6_tw39_pack_1, 10:1

The magnet must be centered over the TMR sensor element, which is offset by 0.5 mm from the geometric center of the chip (see drawing above).

FAHaus

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these values damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
G001	xVDD	Voltage at AVDD, VDD1, and VDD2	Referenced to xGND (AGND, GND1, and GND2 respectively)	-0.3	4.1	V
G002	Vpin	Pin Voltage at any pin	Referenced to xGND	-0.3	AVDD +	V
					0.3	
G003	lin()	Input Current into any pin		-2	2	mA
G004	lout()	Output Current	Single output pin loaded	-10	10	mA
G005	Bmax	Magnetic Flux Density			180	mT
G006	Vesd1	ESD Susceptibility	HBM, 100 pF discharged through $1.5 \text{ k}\Omega$		2	kV
G007	Tj	Junction Temperature		-40	125	°C

THERMAL DATA

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-40		125	°C
T02	Rthja	Thermal Resistance Chip to Ambient	QFN32-5x5 surface mounted to PCB according to JEDEC 51		40		K/W
T03	Ts	Storage Temperature		-40		125	°C

Rev B4, Page 8/55

ELECTRICAL CHARACTERISTICS

Opera	ting condition	ns: xVDD = 3.13.6 V, Tj = -40+1	25 °C, reference point AGND unless otherwise st	ated.			1
ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device						u
001	xVDD	Permissible Supply Voltage	(all supply pins linked)	3.1		3.6	V
002	I _{xVDD}	Total Supply Current	xVDD = 3.3 V, outputs unloaded		30	42	mA
003	I _{RST}	Reset Current	NRST pulled low after xVDD ramp up		250		μA
004	VDDon	Power-On/Off Threshold	NRST tied to DVDD	2.5	2.7	3.0	V
005	VDDoff	Undervoltage Reset Threshold	Decreasing voltage xVDD; NRST tied to DVDD	2.5		3.0	V
006	tstart	Startup Time	EEPROM configuration valid			10	ms
Magn	etic Input	. ·		1	<u> </u>		<u>u</u>
101	Bext	Magnetic Flux Density	Field direction coplanar to chip (x-y plane) Recommended	30	60	80	mT mT
	-					160	mı
102	Dmag	Recommended Diameter of Magnet	Magnet thickness 2.5 mm	6			mm
103	zdis	Operating Distance of Magnet to Top of Package	for angle accuracy \geq 10 bit; magnet \varnothing 9 mm magnet \varnothing 14 mm		0.5 1.0		mm mm
104	xdis	Permissible Lateral Displacement of Magnet Axis to Center of Sensor	for angle accuracy \geq 10 bit; magnet \varnothing 9 mm magnet \varnothing 14 mm		0.25 0.5		mm mm
105	храс	Sensor Placement vs. Center of Package		-0.2		0.2	mm
106	<i>ϕ</i> pac	Zero Angle vs. Package Axis	Shipping state, uncalibrated	-2		2	DEG
107	fin()	Magnet Field Rotation Frequency		0		6	kHz
Conve	erter Perforr	mance		1			u
201	INL	Integral Nonlinearity	Refer to Figure 1, magnetic input according to 101 cf; settled error correction		± 0.15		0
			On power up, with OEM calibration			±0.5	0
202	DNL	Differential Nonlinearity	Refer to Figure 1; at 10,000 AB pulses		± 0.002		•
204	RESnf	Noise-free Resolution	deviation $\pm 3\sigma$, bandwidth 100 kHz		13.2		bit
205	Nrms	Angle Noise	deviation $\pm 1\sigma$		0.006		•
Increr	nental Outp	uts: A/U, B/V, Z/W					
301	Vs()hi	Saturation Voltage Hi	Vs()hi = VDD1 - V(); I() = -4 mA			0.7	V
302	Vs()lo	Saturation Voltage Lo	I() = 4 mA			0.7	V
303	lsc()hi	Short-Circuit Current Hi	Pin shorted to GND1	-30			mA
304	lsc()lo	Short-Circuit Current Lo	Pin shorted to VDD1			30	mA
305	tr()	Rise Time	xVDD = 3.3 V, CL = 50 pF, 10% $ ightarrow$ 90% VDD			20	ns
306	tf()	Fall Time	xVDD = 3.3 V, CL = 50 pF, 10% \rightarrow 90% VDD			20	ns
307	t _{AB}	Output Phase A vs. B	Refer to Figure 2		25		%
308	t _{whi}	Duty Cycle at Output A, B	Refer to Figure 2		50		%
309	AArel	Relative Angle Accuracy	Refer to Figure 2, at up to 2500 cpr		2		%
310	t _{MTD}	Minimum Edge Distance A to B	Refer to Figure 2; ABLIMIT = 0 ABLIMIT = 24	1/fosc	20 500		ns ns ns
311	fc()	Clock Frequency at MTCLK	Multiturn function enabled: A/U = MTCLK		150		kHz
BiSS	Interface: M						
401	Vt()bi	Input Threshold Hi at MAL SLL				10	V
402		Input Threshold Lo at MAL SLL		0.8		1.5	V
402	Ve()bi	Saturation Voltage Hi at SLO	$V_{s}(hi = VDD1 - V(h: I) = -4 mA$	0.0	├┦	07	V V
404		Saturation Voltage Lo at SLO	$I() = 4 m \Delta$		<u> </u>	0.7	V V
404		Short Circuit Current Li at SLO	Pin shorted to CND1	20		0.7	v m^
400		Short-Circuit Current Lo at SLO	Pin shorted to V/DD1	-30		30	mA
400		Dise Time at SLO			<u> </u>	20	
407	u() +f()		$x V D D = 3.3 v, CL = 50 \mu F, 10\% \rightarrow 90\% V D D$			20	115
408	u()	Fail Time St SLU	$xvD = 3.3 v, CL = 50 pr, 10\% \rightarrow 90\% VDD$			20	ns

Rev B4, Page 9/55

ELECTRICAL CHARACTERISTICS

		13. XVDD = 3.1					1
ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
409	fclk()	Permissible Clock Frequency at	BiSS			10	MHz
		MAI	SSI SSI offer request time t			1	MHz
410	4	Deguast Time at MAL	Sol alter request time t_{RQ}	_	24/faga	4	
410	t _{RQ}	Request Time at MAI	Only for SSI output, see Fig.3	_	24/10SC		-
411	Cout()		See Figure 5, BISS_CFG0.at = 0 (lixed)		/fosc		
			BiSS_CFG0.at = 1 (adaptive)	8/fosc	t _{init} + 4/fosc	1024 /fosc	
SPI In	terface: SI,	SCLK, NCS, SO			4/1030	/1030	
501	Vt()hi	Input Logic Threshold Hi at				1.9	V
		SI, SCLK, NCS					
502	Vt()lo	Input Logic Threshold Lo at SI, SCLK, NCS		0.8			V
503	llk()	Input Leakage Current at SI, SCLK, NCS				±50	nA
504	f(SCLK)	Permissible SPI Clock Frequency at SCLK				20	MHz
505	Vs()hi	Saturation Voltage Hi at SO	Vs()hi = VDD1 - V(); I() = -4 mA			0.7	V
506	Vs()lo	Saturation Voltage Lo at SO	I() = 4 mA			0.7	V
507	tr()	Rise Time at SO	xVDD = 3.3 V, CL = 50 pF, 10% \rightarrow 90% VDD			20	ns
508	tf()	Fall Time at SO	xVDD = 3.3 V, CL = 50 pF, 10% \rightarrow 90% VDD			20	ns
Error	Input/Outpu	it: NERR	1				
601	Vt()hi	Input Threshold Hi				1.9	V
602	Vt()lo	Input Threshold Lo		0.8			V
603	Vs()lo	Saturation Voltage Lo	I() = 4 mA (open drain)			0.7	V
604	lsc()lo	Short-Circuit Current Lo	NERR pulls low, short to VDD1			30	mA
Contr	ol Inputs: N	RST, NPRE, NCLB					
701	Vt()hi	Input Logic Threshold Hi				1.9	V
702	Vt()lo	Input Logic Threshold Lo		0.8			V
703	llk()	Input Leakage Current			±50		nA
Bias (Outputs: VC	, VREF			·		
801	VC	Bias Voltage VC	I(VC) = 0		50		%AVDD
802	dVREF	ADC Reference Output VREF	dVREF = V(VREF) - V(VC); I(VREF) = 0	-1.1	-1	-0.9	V
Intern	al Oscillato	r			·		
A01	fosc	Oscillator Frequency	Tj = 27 °C		50		MHz
A02	TCf	Temperature Coefficient			225		ppm/K
Temp	erature Sen	sor					
B01	Тасс	Temperature Sensor Accuracy	Tj = 100 °C		±2		°C
Intern	al EEPROM	l	1				
C01	Nwrite	Permissible Number of Write Cycles	Tj = -40 °C85 °C	1000			
C02	Tjw	Write Temperature Range		-40		85	°C
C03	Tjr	Read Temperature Range		-40		125	°C
C04	DRTraw	Raw Data Retention Time		10			years
C05	DRTact	Actual Data Retention Time (with error correction)	Tj = 85 °C	50			years

Rev B4, Page 10/55

Figure 2: Description of AB output signals

Rev B4, Page 11/55

laus

OPERATING REQUIREMENTS: BiSS Interface

Operat	ting conditio	ns: xVDD = +3.1+3.6 V, xGND = 0 V, Tj	= -40125 °C			
ltem	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
SSI pr	otocol					
1001	t _C	Permissible Clock Period	With t _{RQ} according to I004	250		ns
1002	t _{L1}	Clock Signal Hi-Level Duration		125	t _{out}	ns
1003	t _{L2}	Clock Signal Lo-Level Duration		125	t _{out}	ns
1004	t _{RQ}	Request Time	Clock low-level at MAI due to 410	500		ns
1005	t _{P3}	Output Propagation Delay			50	ns
1006	t _{out}	Slave Timeout		see Elec.	Char. 411	
1007	t _{frame}	Permissible Frame Repetition		*	indefinite	
BiSS (C protocol					
1008	t _C	Permissible Clock Period		100		ns
1009	t _{L1}	Clock Signal Hi-Level Duration		50	t _{out}	ns
1010	t _{L2}	Clock Signal Lo-Level Duration		50	t _{out}	ns
1011	t _{busy}	Minimum Data Output Delay		2	t _C	
1012	t _{busy}	Maximum Data Output Delay			400	ns
1013	t _{P3}	Output Propagation Delay			50	ns
1014	t _{out}	Slave Timeout		see Elec.	Char. 411	
1015	t _{S1}	Setup Time:		25		ns
		SLI stable before MA hi \rightarrow lo				
1016	t _{H1}	Hold Time: SLI stable after MAI hi \rightarrow lo		10		ns
1017	t _{frame}	Permissible Frame Repetition		*	indefinite	

Note: * Allow t_{out} to elapse.

Figure 4: BiSS protocol timing

Figure 5: BiSS slave timeout

Rev B4, Page 12/55

Haus

OPERATING REQUIREMENTS: ADI Interface

ltem	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
BiSS I	Protocol (A	DI_CFG.biss = 1)				
1101	t _C	Clock Period	ADI_CFG.freq = 0 ADI_CFG.freq = 1	5.9 0.59	7.7 0.77	μs μs
1102	t _{L1} , t _{L2}	Clock Signal Hi/Lo Level Duration		5	0	% t _C
I103	t _{busy}	Permissible Processing Time	relative to clock period		∞	% t _C
1104	t _{P0}	Permissible Propagation Delay (Line Delay Compensation)	not supported (data is captured on next rising clock edge)		0	ns
1105	∆t _P	Permissible Propagation Delay Variance	not supported (refer to t_{S} and $t_{\text{H}})$			% t _C
1106	t _S	Setup Time: Data stable before clock edge lo \rightarrow hi	without line delay compensation $(t_{P0} = 0)$	100		ns
1107	t _H	Hold Time: Data stable after clock edge lo \rightarrow hi	without line delay compensation $(t_{P0} = 0)$	0		ns
I108	t _{out}	Permissible Slave Timeout		t _C		μs
I109	t _{frame}	Clock Frame Repetition	Note: This value can vary during operation.	1	3	ms
SSI Pr	rotocol (AD	I_CFG.biss = 0)				
1110	t _C	Clock Period	ADI_CFG.freq = 0 ADI_CFG.freq = 1	5.9 0.59	7.7 0.77	μs μs
1111	t _{L1} , t _{L2}	Clock Signal Hi/Lo Level Duration		5	0	% t _C
1112	t _S	Setup Time: Data stable before clock edge lo \rightarrow hi		100		ns
1113	t _H	Hold Time: Data stable after clock edge lo \rightarrow hi		0		ns
1114	t _{out}	Permissible Slave Timeout		t _C		μs
1115	t _{frame}	Clock Frame Repetition	Note: This value can vary unpredictably during operation.	1	3	ms

Figure 7: ADI timing with SSI protocol

Rev B4, Page 13/55

Haus

OPERATING REQUIREMENTS: SPI Interface

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
SPI Int	terface Tim	ning				
1201	t _{C1}	Permissible Clock Cycle Time	Clock frequency according to 504	50		ns
1202	t _{D1}	Clock Signal Lo Level Duration		15		ns
1203	t _{D2}	Clock Signal Hi Level Duration		15		ns
1204	t _{S1}	Setup Time: NCS lo before SCLK lo \rightarrow hi		80		ns
1205	t _{H1}	Hold Time: NCS lo after SCLK hi \rightarrow lo		50		ns
1206	t _{W1}	Wait Time: between NCS lo \rightarrow hi and NCS hi \rightarrow lo		200		ns
1207	t _{S2}	Setup Time: SI stable before SCLK lo \rightarrow hi		5		ns
1208	t _{H2}	Hold Time: SI stable after SCLK lo \rightarrow hi		10		ns
1209	t _{P1}	Propagation Delay: SO stable after NCS hi \rightarrow lo			60	ns
1210	t _{P2}	Propagation Delay: SO high impedance after NCS Io \rightarrow hi			25	ns
1211	t _{P3}	Propagation Delay: SO stable after SCLK hi \rightarrow lo			20	ns

Figure 8: SPI Timing

Rev B4, Page 14/55

aus

ELECTRICAL CONNECTIONS

The basic electrical connections for an absolute singleturn stand-alone application using BiSS are shown in Figure 9. An external RS422-compatible driver/receiver, such as the iC-HF, and a 5 V-to-3.3 V level shifter, such as the TXS0104E, are required.

See the iC-HF data sheet for more information.

Alternatively, resistive voltage dividers can be used instead of an explicit level shifter chip. In this case, values of 470 Ω and 560 Ω are recommended to drive MAI and SLI. This will add 15 mA of current consumption.

Note: The input voltages must not exceed the chip's supply voltage (3.3 V).

Figure 9: Typical Electrical Connections for Absolute BiSS Stand-Alone Application featuring additional incremental quadrature outputs.

Note: The circuit diagram is a basic application example only. Other components may be necessary, but are omitted for clarity. Please refer to the component specific data sheets.

Power and Ground

It is sufficient to connect all three supply pins to the same low-impedance power source, preferably an on-board voltage regulator. Likewise, the three ground pins can usually be connected to the same solid ground plane on the PC board. In all cases, each power pin should have a dedicated $1 \, \mu F$ decoupling capacitor placed as close to the iC-TW39 as possible.

Reference Outputs

The reference outputs VREF and VC must each be decoupled to ground with separate 100 nF capacitors placed as close to the iC-TW39 as possible. Do not apply any load to these pins.

NCLB Input

The active-low NCLB input is used to activate the auto-

calibration feature of the iC-TW39. A push-button and pull-up resistor can be connected to this input as shown for easy manual calibration. If push-button calibration is not required, NCLB should be connected to 3.3 V to avoid spurious calibration.

NRST Input

The iC-TW39 contains a built-in power-on-reset (POR) circuit that controls the safe startup of the device. In most applications, no external components are required and NRST can be connected directly to 3.3 V.

However, to extend the device reset in case of slow-rising supplies, it is recommended to provide an RC network on the PC board (see Figure 10) and only populate the capacitor if required.

Rev B4, Page 15/55

To reduce the power consumption in battery-powered applications, the NRST input is best controlled by the host. The following MCU controlled sequence should be followed:

- 1. Set NRST = 0 and ramp up xVDD.
- 2. Set NRST = 1 for at least $10 \,\mu s$.
- 3. Set NRST = 0 to enter low power mode.

Refer to Elec. Char. 003, page 8, for current consumption. The restart after NRST = 1 takes up to 10 ms, see Elec. Char. 006.

Figure 10: NRST Connection

NPRE Input

The NPRE input enables a pin-triggered zeroing for the BiSS/SSI interface data output. Refer to section Position Preset for further information.

To prevent input floating, NPRE may be wired to either ground or 3.3 V when the pin function is not required and disabled by programming.

NERR

The open-drain NERR pin functions as an active-low fault output. It can be used to directly drive an LED with

an appropriate current-limiting resistor for fault indication.

SPI Port

The iC-TW39 provides a standard SPI (Serial Peripheral Interface) slave port that can be used for device configuration and communication with a host processor. Refer to the Programmer's Reference for information. Connect the SPI port pins to the host processor as shown in Figure 11.

Figure 11: SPI Port Connection

If the host processor or microcontroller can be disconnected, the SPI port pins must be pulled up or down as shown in Figure 11. Do not allow any of the SPI port pins to float.

Reserved Pins

Each reserved pin must be wired to either ground or VDD according to the pin configuration description (see page 5).

Rev B4, Page 16/55

DEVICE FUNCTIONS

The advanced iC-TW39 angle sensor utilizes Tunnel Magneto Resistor bridges along with digital signal processing for interpolation, filtering, error correction, and monitoring operation.

The chip's permanent Auto adaption maintains optimal offset, amplitude balance, and phase compensation values for the TMR's sin/cos signals during operation to ensure maximum interpolation accuracy and lowest jitter under all operating conditions.

Traditional encoder quadrature ABZ signals are available as single-ended outputs. The ABZ output resolution (edges or AB cycles per revolution) is programmable independently of the BiSS output resolution.

The ABZ outputs incorporate a programmable AB output frequency limiter that guarantees a minimum separation time between AB edges. This is useful to avoid counting errors with PLCs or counters with input frequency limits less than the 12.5 MHz maximum AB output frequency of the iC-TW39.

When the AB output frequency is being limited, the AB outputs lag behind the input angle. If this condition is temporary or transient, the AB outputs catch up when the limiter is no longer active. If this condition persists, however, a fatal fault is generated and the iC-TW39 stops its angle conversion and tri-states the ABZ/UVW outputs. The AB output frequency limiter can be programmed to activate NERR.

3-phase UVW signals for commutation of brushless motors with up to 64 poles (32 pole pairs) per revolution are also available over the incremental outputs.

The BiSS slave interface provides BiSS C-Mode bidirectional communication of output angle (with independently programmable resolution), revolution count, and configuration data. Encoder Profiles 3 and 3S (Safety) are implemented in the iC-TW39.

Note that the execution of BiSS protocol commands is not featured. In hosted applications, user-defined system commands could be implemented on the microprocessor and called up by the BiSS control data communication.

The SPI port is available for use by an external host processor for initial calibration or general communication. The iC-TW39 provides comprehensive monitoring functions for status and faults, chip temperature and sin/cos input signal quality.

The status/fault monitor monitors 13 internal conditions, each of which can be individually configured to activate the fault output, pin NERR, as well as BiSS error and warning bits to notify an external system during operation. The active-low NERR output can be used to directly drive an LED. In addition, real-time and latched status information is available over the SPI and BiSS interfaces.

The iC-TW39 incorporates an on-chip temperature sensor. The temperature monitor can provide real-time chip temperature data to a host processor or BiSS master. The temperature monitor can be configured to activate a status bit when the chip temperature exceeds a programmable limit. This condition can also activate NERR.

The sensor amplitude monitor continuously monitors the sensor's sin/cos vector amplitude by calculating the quantity $\sqrt{sin^2 + cos^2}$. If the vector amplitude is outside configured limits, a status bit is activated and the fault output can be activated.

The excessive error monitor continuously calculates the residual offset, balance, and phase error of the corrected sin/cos signals. These residues represent the uncorrected signal error and are typically zero (or near zero) assuming the sensor is properly positioned to the magnet. If any of the error residues exceeds configured limits, a status bit is set and the fault output can be activated.

The excessive adaption monitor continuously compares the current offset, balance, and phase correction parameter values to baseline values stored in the EEPROM during device configuration. If any of the correction values deviate from the base values (due to auto adaption) by more than the configured limits, a status bit is set and the fault output can be activated.

Auto calibration is used at initial device commissioning to automatically determine gain, offset, channel balance, and phase compensation values for the sin/cos signals derived from the TMR angle sensor.

Auto calibration is initiated using the NCLB input pin or via a serial command. Calibrated values are stored in the internal EEPROM for use on subsequent startups.

Rev B4, Page 17/55

Device and chip identification is provided in the form of a unique factory-programmed chip serial number as well as a chip ID and revision code. In BiSS applications, user-programmable manufacturer ID, product ID, device serial number, and production date are available.

The iC-TW39 incorporates an internal write-protected EEPROM to store configuration and initial calibration data for use at startup. In addition to a standard check-sum on the EEPROM data, sophisticated data encoding allows detection and correction of single-bit errors and detection of two-bit errors for enhanced application security. The EEPROM can be unlocked using the SPI or BiSS interface.

Output Modes

The iC-TW39 features different output modes. All signals are available as single-ended standard CMOS outputs or inputs respectively. Connection of external line drivers/transceivers must be used to achieve 5V compatibility.

In combination with the BiSS Interface, one of four different output modes can be selected as shown in Table 1. If using SSI, refer to Table 2.

BiSS Output Modes							
MAIN_CFG	Modo	I/O Pin Signals					
.nio	would	MAI	SLO	SLI	A/U	B/V	Z/W
0	BiSS Only	MAI	SLO	SLI	Hi-Z	Hi-Z	Hi-Z
1	BiSS/ABZ	MAI	SLO	SLI	A+	B+	Z+
2	BiSS/UVW	MAI	SLO	SLI	U+	V+	W+
(3 - optional)	(BiSS/ADI)	MAI	SLO	SLI	Clk Out	Data In	I/O

SSI Output Modes								
MAIN_CFG	Mode		I/O Pin Signals					
.nio	would	MAI	SLO	SLI	A/U	B/V	Z/W	
0	SSI Only	CLK	Data	Hi-Z	Hi-Z	Hi-Z	Low	
1	SSI/ABZ	CLK	Data	Hi-Z	A+	B+	Z+	
2	SSI/UVW	CLK	Data	Hi-Z	U+	V+	W+	
(3 - optional)	(SSI/ADI)	CLK	Data	Hi-Z	Clk Out	Data In	I/O	

Table 1: BiSS Output Modes

Table 2: SSI Output Modes

All **ABZ output modes** require additional configuration for output polarity, direction, startup, etc. as explained in ABZ OUTPUT on page 20.

All **UVW output modes** require additional configuration for output polarity, direction, etc. as explained in UVW OUTPUT on page 22.

BiSS output modes use the MAI, SLO, and SLI pin for the BiSS signals, whereas **SSI output modes** use only

MAI for Clock In and SLO for Data Out. The SLI pin has no function in this case. The signals should be connected to a suitable RS422-compatible driver/receiver as shown in Figure 9.

All BiSS and SSI output modes require additional configuration as explained in BISS/SSI INTERFACE on page 24.

Rev B4, Page 18/55

ANGLE PROCESSOR

Parameter	eter Default Description Comments		Comments
START.wait	0	Startup Wait Time (default = 0 ms)	
	16	1 ms, 3 ms, 10 ms, 30 ms, 100 ms, 300 ms	Optional, e.g. when using the ADI.
Counter			·
GB_CFG.rclen	0	Revolution Counter Length = 0 bits	
	2	Revolution Counter Length = 8 bits	
	3	Revolution Counter Length = 12 bits	
	4	Revolution Counter Length = 16 bits	
	6	Revolution Counter Length = 24 bits	Allowed maximum.
Hysteresis			
HYST	43	Hysteresis, recommended minimum	
		(7164 interpolated angle increments)	0.0384° = 140" ensures flicker-free AB output.
range	071	Minimum (zero) allowed maximum (4.92°)	

Table 3: < Angle Processor> Parameters

GB_CFG.rclen determines the length (number of bits) of the revolution counter.

The actual number of bits used for the revolution counter, *rcbits*, is calculated as

HYST determines the hysteresis of the interpolated angle. Its register value is semi-logarithmic to provide a wide range of values for different applications. The actual hysteresis in output degrees, *hyst*, is calculated as

hyst[°] =
$$\pm \frac{360^{\circ}}{2^{26}} \cdot (HYST[1:0] + 4) \cdot 2^{HYST[6:2]} - 4$$

The equivalent hysteresis in output AB edges, UVW edges, or BiSS LSBs is a function of the output resolution as determined by ABZ_RES, UVW_CFG.pairs, and BISS_RES registers respectively.

Startup

The startup sequence (see Figure 12) is initiated when power is applied to the iC-TW39. A POR circuit monitors the supply voltage and waits until it has reached 2.7...2.9 V. The iC-TW39 then reads the configuration data from its EEPROM and halts for a programmable wait time configured by **START.wait**.

Note that the chip's VDD supply must be above the specified minimum (see Elec. Char. item 001) at the end of the startup wait time. If any faults are detected during the startup cycle, the iC-TW39 does not enable any outputs but goes into an idle state with NERR asserted.

The startup sequence can also be initiated by external hardware connected to the NRST input, or by a command via the BiSS or SPI interfaces.

During a normal startup and no active faults, **STAT_START** activates in order as each startup state is completed. Thus, a successful startup is finally indicated by STAT_START = 0x000F (see Table 4 for overview).

Figure 12: Normal Startup with No Active Faults.

STAT_START.boot = 1 when the iC-TW39 has completed its bootup state and is ready for communication via the BiSS or SPI interfaces. During the bootup state (STAT_START.boot = 0), the NERR pin is active (low), and the iC-TW39 attempts to read its configuration parameters and correction values from the internal EEPROM.

When this is complete and there are no fatal faults (STAT_FATAL = 0), STAT_START.boot changes to 1, and the NERR pin is deactivated. STAT_START.boot also changes to 1 at the end of bootup even when fatal faults come active, but the startup sequence does not advance to the run state and the NERR pin remains active (low).

During the run state of the startup sequence, STAT_START.run = 0, the iC-TW39 starts the angle

Rev B4, Page 19/55

processing and interpolation. When this is complete, STAT_START.run changes to 1.

If the optional absolute data interface (ADI) is not in use to process MT data, STAT_START.abs = 1 is reached simultaneously with STAT_START.rel = 1, and the ABZ or UVW outputs are enabled. If the optional ADI is used, STAT_START.rel = 1 as soon as the Interpolated Angle is valid, i.e. when the "relative" position has been established. This happens almost simultaneously with STAT_START.run = 1. After the first valid absolute position read over the ADI occurs, STAT_START.abs = 1 is reached and the ABZ or UVW outputs are enabled.

Parameter	Value	Description	Comments
STAT_START		Startup Status Register	
	0b 0001	Bootup complete	STAT_START.boot = 1
	0b 0011	Angle processor running	STAT_START.run = 1
	0b 0111	Interpolated angle (IA) valid	STAT_START.rel = 1
	0b 1111	Absolute position (IA, RC) valid	STAT_START.abs = 1

Table 4: <Startup> . Startup sequence on power up and after releasing NRST to high.

ABZ OUTPUT

Devenueter	Defeult	Description	Commonto
Parameter	Default	Description	Comments
ABZ Resolution			
ABZ_RES	4 0 9 6	1 024 AB cycles per revolution	Factory default.
range	4262 144		Up to 65 536 AB cycles per rev.
AB_LIMIT	1	AB Output Frequency Limit = 6.25 MHz	
range	01023		Up to 12.5 MHz maximum (edge rate 20 ns)
ABZ_CFG.zwidth	0	Z Output Width = 1 AB incr. (90° of an AB cycle)	Factory default.
	1	Z Output Width = 2 AB incr. (180° of an AB cycle)	
	2	Z Output Width = 4 AB incr. (1 AB cycle)	
ABZ_PH	0	ABZ Phase Shift = 0°	
range	065535		Example: 32 768 = 180°
ABZ Output Configu	ration		
MAIN_CFG.nio	1	Function of Outputs: A/U, B/V, Z/W	1 = ABZ.
ABZ_CFG.apol	0	Invert A polarity	
ABZ_CFG.bpol	0	Invert B polarity	
ABZ_CFG.zpol	0	Invert Z polarity	
ABZ_CFG.dir	0	Reverse counting direction	
range	0, 1	0 = normal, 1 = inverted / reversed	

ABZ Output Configuration

The ABZ outputs must be configured for resolution, polarity, direction of rotation, etc. to match the application requirements. Note that the configuration of ABZ_CFG is only effective in ABZ output mode (MAIN_CFG.nio = 1), otherwise it is ignored.

ABZ_RES determines the resolution of the AB outputs in edges (increments) per revolution. Any resolution between 4 and 262 144 (2¹⁸) edges per revolution may be specified regardless of the resolution of the BiSS Interface. The AB output resolution in cycles per revolution is ABZ_RES/4.

AB_LIMIT is used to set the level of the AB output frequency limiter.

The actual AB output frequency limit, *fab*, is calculated as

$$fab [MHz] = \frac{12.5 \,\text{MHz}}{(\text{AB}_\text{LIMIT} + 1)}$$

The equivalent minimum time between AB edges, *tedge*, is calculated as

$$tedge[ns] = 20 \cdot (AB_LIMIT + 1)$$

The magnetic field input frequency, *finput*, that corresponds to the AB frequency limit is calculated as

$$finput[kHz] = \frac{50\,000}{ABZ_RES \cdot (AB_LIMIT + 1)}$$

Table 5: <ABZ> Parameters

For example, if ABZ_RES = 40 000, and AB_LIMIT =

$$fab[MHz] = \frac{12.5 \text{ MHz}}{(24+1)} = 0.5 \text{ MHz}$$

and

24.

$$finput[kHz] = \frac{50\,000}{40\,000 \cdot (24+1)} = 0.05\,kHz$$

In this case the maximum input speed calculates to 3,000 rpm (60 x 50 Hz). When the speed exceeds *finput*, the AB output position can no longer keep up with the sensor position and STAT_VAL.vlim = 1. In this case, the iC-TW39 keeps generating output pulses at the maximum AB frequency.

If this condition is temporary or transient, the AB outputs catch up when the input speed decreases. If this condition persists and the AB output position falls behind the input angle by 180°, the AB outputs are no longer valid (unexpected direction reversal) and a fatal fault is generated (STAT_VAL.lagfatl = 1).

ABZ_CFG.zwidth determines the width of the Z output.

ABZ_PH determines the position of the Z output relative to the magnetic field angle. The actual ABZ phase, *abzph*, in degrees is calculated as

$$abzph[^{\circ}] = ABZ_PH \cdot \frac{360^{\circ}}{65\,536}$$

If ABZ_PH is kept zeroed, the Z output signal appears when the orientation of the magnet field to the package of iC-TW39 is as shown in Figure 13.

Rev B4, Page 21/55

Figure 13: On-axis view (through IC backside) with magnet orientation for zero angle and Z output (ABZ_PH = 0). The interpolated angle increases with CW rotation. **ABZ_CFG.apol** determines whether the polarity of the A output is normal or inverted. ABZ_CFG.apol also determines the state of the A output when the Z output is active.

ABZ_CFG.bpol determines whether the polarity of the B output is normal or inverted. ABZ_CFG.bpol also determines the state of the B output when the Z output is active.

ABZ_CFG.dir determines the counting direction of the AB outputs.

Note that setting ABZ_CFG.apol or ABZ_CFG.bpol (but not both) also reverses the counting direction of the AB outputs. In this case, invert ABZ_CFG.dir to restore the original AB counting direction. Setting both ABZ_CFG.apol and ABZ_CFG.bpol does not change the AB output counting direction.

ABZ_CFG.zpol = 0 Positive rotation (increasing angle)

Figure 14: AB Output Polarity and Z Width

Rev B4, Page 22/55

UVW OUTPUT

Parameter	Default	Description	Comments
UVW Resolution			
UVW_CFG.pairs	1	UVW Pole Pairs = 1 UVW cycle per revolution	
range	031		0 = 32 cycles (maximum)
UVW_PH	0	UVW Phase Shift = 0 deg	
range	065535		Example: 32768 = 180°
UVW Output Configu	ration		
MAIN_CFG.nio	2	Function of Outputs: A/U, B/V, Z/W	2 = UVW.
UVW_CFG.pol	0	Invert UVW polarity	
UVW_CFG.dir	0	UVW Rotation Direction = normal UVW sequence	
range	0, 1	0 = normal, 1 = inverted / reversed	

Table 6: <UVW> Parameters

UVW Output Configuration

The UVW outputs must be configured for resolution, polarity, direction of rotation, etc. to match the application requirements. The state of the UVW signals at a given position within a revolution is always the same after every startup.

UVW_CFG is used to set the polarity, direction, and resolution of the UVW outputs. It is only effective in UVW output mode (MAIN_CFG.nio = 2), otherwise it is ignored.

UVW_CFG.pairs determines the number of UVW cycles per revolution. It must be equal to the number of magnetic pole pairs of the motor being controlled.

UVW_PH determines the phase shift between the magnetic field angle (FA) and the start of the UVW cycle. The actual UVW phase, *uvwph*, in degrees is calculated as

$$uvwph[^{\circ}] = UVW_PH \cdot \frac{360^{\circ}}{65\,536}$$

If UVW_PH is zero, the U output edge appears when the orientation of the magnet field to the package of iC-TW39 is as shown in Figure 13.

UVW_CFG.pol determines whether the polarity of the UVW outputs is normal or inverted. Note that setting UVW_CFG.pol shifts the phase of the UVW outputs by 180° .

UVW_CFG.dir determines the rotation direction (phase sequence) of the UVW outputs.

The effect of the UVW_CFG.dir and UVW_CFG.pol with positive magnetic field rotation (i.e. CCW in Figure 13) is shown in Figures 15 and 16.

Note: Always restart the interpolator (command 0x04) after any change to UVW_CFG or UVW_PH to ensure proper UVW output synchronization.

Figure 15: UVW Operation (2 Pole Motor)

Figure 16: UVW Operation (4 Pole Motor)

Rev B4, Page 23/55

ABZ + UVW OUTPUT

By pulling pin 24 low, the BiSS Interface can be disabled and switched to output incremental signals instead. This enables the output of ABZ signals together with UVW signals. In this case, the iC-TW39 must be configured via SPI.

Parameter	Default	Description	Comments		
ABZ Output Configuration					
Pin 24 = Low		BiSS Interface disabled for ABZ output.	MAI = A, SLO = B, SLI = Z.		
UVW Output Configuration					
MAIN_CFG.nio	2	Function of Outputs: A/U, B/V, Z/W	2 = UVW		
		•			

ABZ and UVW Configuration

Refer to Tables 5 and 6.

Table 7: Configuration of Pure Incremental ABZ + UVW Output

-laus

BiSS/SSI INTERFACE

The BiSS/SSI slave interface in the iC-TW39 allows BiSS C-mode communication with a BiSS master for transmission of absolute position and control data, or SSI communication with an SSI master for transmission of absolute position data.

An external RS422-compatible line driver/receiver is generally required to provide differential signals as shown in Figure 9.

BiSS Communication

The iC-TW39 provides one channel of single-cycle sensor data (SCDS) in the SCD frame. This data consists of multiturn and singleturn position at programmable resolution with up to 50 bits maximum, two feedback bits, and a CRC value of 6 or 16 bits as specified by the BiSS Profile ID.

The multiturn position represents the counted revolutions and the singleturn position the interpolated angle.

The BiSS warning (nW) and error (nE) bits can be configured to activate in response to any selection of the iC-TW39's internal status conditions. The nE and nW bits can also be configured to automatically clear, in which case they are active for only one BiSS SCD frame. Finally, any fatal status condition automatically activates both bits. Direct access to frequently used iC-TW39 registers and indirect access to all other registers is provided in the BiSS control data frame.

Note: iC-TW39 does not support BiSS protocol commands.

SSI Communication

The iC-TW39 provides one channel of single-cycle sensor data per frame. This data consists of multiturn and singleturn position at programmable resolution with up to 50 bits maximum. The multiturn position represents the counted revolutions and the singleturn position the interpolated angle. Error or CRC bits are not available.

Note: Blind register write capability is available in SSI mode to provide BiSS recovery.

Note: An active error mapped to the BiSS error bit by means of STAT_BE.xxx causes the data output SLO (B+) to show high permanently in SSI mode until the error is removed.

Interface Configuration

The registers used by the BiSS/SSI Interface are shown in Table 8.

Rev B4, Page 25/55

Parameter	Value	Description	Comments
BiSS General	I		
BISS_CFG0.ssi	0, 1	Protocol: 0 = BiSS, 1 = SSI	
BISS_CFG0.at	0, 1	BiSS Timeout: 0 = fixed (20 µs), 1 = adaptive	
BiSS_CFG0.dir	0, 1	BiSS SCDS Count Direction	
		0 = same direction, 1 = opposite direction	
BiSS Data			
BISS_CFG0.mtlen	0	BiSS/SSI Multiturn Bits = 0 bit MT data	
	15	BiSS/SSI Multiturn Bits = 4, 8, 12, 16, 20 bit	
	6	BiSS/SSI Multiturn Bits = 24 bit MT data	Allowed maximum MT output resolution.
BISS_RES	4 0 9 6	Singleturn BiSS SCDS Resolution = 12 bit	Binary numbers from 4 upwards only.
	16 384	Singleturn BiSS SCDS Resolution = 14 bit	
	65 536	Singleturn BiSS SCDS Resolution = 16 bit	
	131 072	Singleturn BiSS SCDS Resolution = 17 bit	
	2 097 152	Singleturn BiSS SCDS Resolution = 21 bit	
	16777216	Singleturn BiSS SCDS Resolution = 24 bit	Allowed maximum ST output resolution.
BiSS_DLEN	25	BiSS SCDS Data Length (bit count = DLEN + 1)	Read only (calculated by iC-TW39).
BiSS Profile			
BISS_CFG1.bp	0	BiSS Profile BP3 (Standard Encoder Profile)	with nE, nW, 6-bit CRC
			(polynomial 0x43, start value 0)
	1	BiSS Profile BP3s (Safety Encoder Profile)	with nE, nW, 6-bit Sign-of-Life, 16-bit CRC
			(polynomial 0x190D9, start value 0).
PROFILE	0x1A62	BISS Encoder Profile ID	As calculated by iC-TW39.
BiSS Position Prese	t		
BISS_NRPPH	0	BiSS Interpolated Angle Preset Phase Shift	These values will be calculated by iC-TW39
BISS_RCPPH	0	BiSS Revolution Count Preset Phase Shift	if triggered by command or input NPRE.
CALIB_CFG.gppre	0	Position Preset Input NPRE = disabled	
	1	Position Preset Input NPRE = enabled	

Table 8: <BiSS> Parameters

BISS_CFG0 is used to configure the BiSS/SSI Interface for protocol (BiSS or SSI), direction of rotation, multiturn bit length, adaptive timeout, and startup mode.

BISS_CFG0.ssi determines the protocol used by the BiSS/SSI Interface.

BISS_CFG0.at determines whether the BiSS timeout is fixed $(20 \,\mu s)$ or adaptive. For more information on the adaptive timeout, see BiSS AN23 at www.biss-interface.com.

BISS_CFG0.dir determines the count (rotation) direction of the BiSS/SSI position data.

BISS_CFG0.mtlen determines the number of bits of the revolution counter that are used for the BiSS/SSI multiturn count.

The number of BiSS multiturn bits must not be greater that the length of the revolution counter (GB_CFG.rclen).

BISS_RES determines the resolution of the singleturn position in the BiSS single-cycle sensor data (SCDS) in increments per revolution. Binary resolutions between 4 and 16777 216 (2²⁴) increments per revolution may

be specified. The BiSS resolution can be configured fully independently of ABZ or UVW resolution.

Note that the number of singleturn plus multiturn bits is limited to a maximum of 50 bits.

BISS_DLEN is a read-only register indicating the length (number of bits) of the BiSS single-cycle sensor data (SCDS) without CRC. This value is calculated automatically by the iC-TW39 and includes error and warning bits, as well as the optional sign-of-life counter.

BISS_CFG1.bp configures iC-TW39 according to the BiSS Encoder Profiles 3 (BP3) or 3 Safety (BP3S). See www.biss-interface.com for more information on the BiSS protocol and BiSS encoder profiles. The available frame formats are shown in Figure 17.

PROFILE contains the BiSS Encoder Profile ID that is generated automatically by iC-TW39 depending on the user's configuration. Restart the interpolator (command 0x04) after any change to ensure proper BiSS operation. See www.biss-interface.com for more information on BiSS encoder profiles.

Note: Always restart the interpolator (command 0x04) after any changes of settings to ensure proper BiSS operation.

preliminary **iC-TW39** 24-BIT MAGNETIC ON-AXIS ANGLE SENSOR Rev B4, Page 26/55 BP3 Header Multiturn Position Singleturn Position nE nW 6-bit CRC Timeout BP3S Multiturn Position Header Singleturn Position nE nW 6-bit SoL Count 16-bit CRC Timeout

Figure 17: BiSS SCD Frame Formats

Position Preset

BISS_NRPPH is the preset phase shift which is added to the interpolated angle for read-out of ST data using the BiSS/SSI Interface.

BISS_RCPPH is the preset phase shift which is added to the revolution count for read-out of MT data using the BiSS/SSI Interface.

Both these values are set automatically by the iC-TW39 when a position preset is performed to define the zero

BiSS Control Data Channel

The BiSS control data communication can directly access the BiSS Direct Access registers the iC-TW39 provides at 0x40 up to 0x7F, e.g. to read the BiSS Profile ID, status, etc.

Furthermore, an indirect access to all internal iC-TW39 registers is supported by exchange registers (on 0x5C to 0x5F) as shown in Table 9.

iC-TW39 Register Address and Data

Indirect read/write access to all iC-TW39 registers is available to the BiSS Interface via slave register addresses 0x5C...0x5F when BiSS register access is allowed (BISS_KEY = 0xB4). To read an iC-TW39 register via the BiSS Interface, use the following sequence:

- 1. Write the LSB of the iC-TW39 register address to BiSS slave register address 0x5C.
- 2. Write the MSB of the iC-TW39 register address to BiSS slave register address 0x5D.
- 3. Read the LSB of the iC-TW39 register data from BiSS slave register address 0x5E.
- 4. Read the MSB of the iC-TW39 register data from BiSS slave register address 0x5F.

It is important to read the LSB register (0x5C) first to ensure that the returned 16-bit register data is consistent (both LSB and MSB sampled at the same time). angle. The position preset for the BiSS/SSI Interface does not change the UVW or the ABZ output phase.

The BiSS/SSI position preset function can be initiated either by writing command 0x05 to the COMMAND register at address 0x60, or using the NPRE input. If input NPRE is enabled for preset (CALIB_CFG.gppre = 1), the preset phase shifts are determined and stored to the EEPROM when input NPRE changes back from low to high level.

To write to an iC-TW39 register via the BiSS Interface, use the following sequence:

- 1. Write the LSB of the iC-TW39 register address to BiSS slave register address 0x5C.
- 2. Write the MSB of the iC-TW39 register address to BiSS slave register address 0x5D.
- 3. Write the LSB of the iC-TW39 register data to BiSS slave register address 0x5E.
- 4. Write the MSB of the iC-TW39 register data to BiSS slave register address 0x5F.

It is important to write the LSB register (0x5C) first to ensure that both the MSB and LSB of the 16-bit register data are written to the iC-TW39. If the MSB of the data (0x5D) is written first, the LSB (0x5C) will not be written to the iC-TW39.

Non-Implemented Registers and Features

BiSS slave register addresses 0x64...0x77 are not implemented in the iC-TW39. Accesses to these registers are rejected and the W-bit in the CDS frame is inverted. BiSS passthrough mode allows a host processor connected to the iC-TW39's SPI interface to handle these accesses if desired.

Rev B4, Page 27/55

BiSS Slave Registers							
	Bi	SS Slave Register			iC	-TW39	Register
Address	BiSS Parameter	Description	Mode	Value	Address	Bits	Name
0x000x3F	See Table	EDS SE ¹	-	-	-	-	-
0x40	BSEL(7:0)	Bank Select ¹	Read/Write		-	-	-
0x41	EDS_BANK(7:0)	EDS Bank Pointer ¹	Read-only	0x01	-	-	-
0x42 0x43	BiSS_BP_ID(15:8) BiSS_BP_ID(7:0)	BiSS Profile ID	Read-only		0x4094	7:0 15:8	PROFILE
0x44 0x45	BISS_DEV_SN(31:24) BISS_DEV_SN(23:16)				0x4096	7:0 15:8	DEV_SN[15:0]
0x46 0x47	BISS_DEV_SN(15:8) BISS_DEV_SN(7:0)	BISS Device Serial Number	Read-only		0x4098	7:0 15:8	DEV_SN[31:16]
0x48						7.0	
0x40 0x49		Chip ID	Read-only	0x1D 0x00	0xE000	15:8	CHIP_ID
0x4A 0x4B		Chip Revision	Read-only	0x41 0x90	0xE002	7:0 15:8	CHIP_REV
0x4C 0x4D		Status	Read-only		0x010E	7:0 15:8	STAT_VAL
0x4E 0x4F		Latched Status	Read-only		0x0110	7:0 15:8	STAT_LATCH
0x50 0x51		Fatal Faults	Read-only		0x0112	7:0 15:8	STAT_FATAL
0x52 0x53		Chip Temperature	Read-only		0x4068	7:0 15:8	T_NOW
0x54 0x55					0x0038	7:0	BISS_JO[15:0]
0x56 0x57					0x003A	7:0	BISS_JO[31:16]
0x58 0x59		Synchronization Offset	Read-only		0x003C	7:0	BISS_JO[47:32]
0x5A 0x5B					0x003E	7:0	BISS_JO[49:48]
0x5C 0x5D		iC-TW39 Register Address	Read/Write ²			7:0 15:8	
0x5E 0x5E		iC-TW39 Register Data	Read/Write ²			7:0	
0x60		iC-TW39 Command Register	Read/Write		0x4000	7.0	COMMAND
0x61		Register Protection Key	Read/Write		0x0042	7:0	BISS KEY
0x62		General-Purpose Inputs	Read-only		0x005A	7.0	GPIN
0x63		General-Purpose Outputs	Read/Write ²		0x0002	7:0	GPOUT
0x64 0x77		Not Implemented	-	_	-	-	_
0x78	BiSS_DEV_ID(47:40)				0x409A	7:0	DEV_ID[15:0]
0x79 0x7A	BISS_DEV_ID(39.32) BISS_DEV_ID(31:24) BISS_DEV_ID(22:16)	BiSS Device ID	Read-only		0x409C	15.0 7:0	DEV_ID[31:16]
0x7C	BISS_DEV_ID(23.10) BISS_DEV_ID(15:8) BISS_DEV_ID(7:0)				0x409E	7:0	DEV_ID[47:32]
0x7E 0x7E	BISS_DEV_ID(7.0) BISS_MFR_ID(15:8) BISS_MER_ID(7:0)	BiSS Manufacturer ID	Read-only		0x40A0	7:0	MFR_ID
Notes	BISS_MIFK_ID(7:0) 15:0 This table is not relevant in BiSS Passthrough Mode (BISS_CFG2.passmode =2). 1 Only if BISS_CFG1.eds = 1.						

² These registers are only writeable if BISS_KEY[7:0] = 0xB4.

Table 9: BiSS Slave Registers

Rev B4, Page 28/55

iC-TW39 Status, Fault, and Command Registers

The iC-TW39's STAT_VAL, STAT_LATCH, and STAT_FATAL, registers are available to the BiSS Interface at slave register addresses 0x4C...0x51.

The iC-TW39's COMMAND register is available at slave register address 0x60. When BiSS register access is protected (BISS_KEY \neq 0xB4), only commands 0x04...0x06 can be executed via the BiSS Interface. See COMMAND REGISTER on page 36 for more information on these commands.

User Data Registers

Six user data registers allow for storage of a user-defined product serial number (**DEV_SN** at 0x44...0x47), device ID (**DEV_ID** at 0x78...0x7D), and manufacturer ID (**MFR_ID** at 0x7E...0x7F) in the internal EEPROM.

The BiSS manufacturer ID is assigned to each BiSS licensee by iC-Haus (support@biss-interface.com). The combination of serial number, device ID and manufacturer ID must be unique to allow the BiSS master to properly assign device addresses.

Register Write Protection

The **BISS_KEY** at 0x61 is used to allow or deny BiSS write access to iC-TW39 registers and commands.

If BISS_KEY[7:0] = 0xB4, the BiSS master can write to any iC-TW39 register. If BISS_KEY[7:0] ≠0xB4, the BiSS master can only write to the iC-TW39 COMMAND register, and only certain commands can be executed. See THE COMMAND REGISTER on page 36 for more information. The BiSS master can read any iC-TW39 register regardless of the BISS_KEY value.

SSI Mode

The SSI protocol is selected when BISS_CFG0.ssi = 1. As for BiSS, SSI communication also requires an external RS422-compatible line driver/receiver to provide differential signals as shown in Figure 9.

SSI configuration is the same as BiSS configuration, except that only the configured singleturn and (counted) multiturn position are returned in the serial data stream. BiSS-specific features such as feedback bits, CRC, control data, etc. are not available in SSI mode and do not need to be configured. The SSI data frame format is shown in Figure 18.

Figure 18: SSI Frame Format

It is possible to write to the iC-TW39 registers in SSI mode using the same procedure as BiSS. However, it is not possible to read any iC-TW39 registers in SSI mode. It should only be necessary to write to the iC-TW39 in SSI mode to enable BiSS mode when SPI communication is not available.

To switch the iC-TW39 from SSI mode to BiSS mode using the SSI interface, use the following sequence:

- 1. Write 0xB4 to slave register address 0x61.
- 2. Write 0x18 to slave register address 0x5C.
- 3. Write 0x00 to slave register address 0x5D.
- 4. Write 0x00 to slave register address 0x5E.
- 5. Write 0x00 to slave register address 0x5F.

This writes 0xB4 to BISS_KEY to allow register access, and 0x0000 to BISS_CFG0, which disables SSI mode and enables BISS mode. It also resets all other BISS_CFG bits which must then be restored to the desired configuration via the BISS Interface.

Haus

BISS ELECTRONIC DATA SHEET

The BiSS interface can be configured to implement BiSS Standard Encoder Electronic Data Sheet EDS SE. This allows the BiSS master to read the device configuration over the BiSS interface at startup. (In hosted applications, the host processor can implement any BiSS EDS.)

If BISS_CFG1.eds = 1 enables the EDS registers, the BiSS bank selection register 0x40 is set to 0x01 and registers 0x00 - 0x3F provide the EDS data according to Table 10. This EDS data is always available regardless of the bank selection value. Refer to the EDS SE data sheet for more information on EDS register entries.

If BISS_CFG1.eds = 0 disables the EDS, the BiSS slave registers 0x00...0x40 are undefined.

EDS Register Entries

EDS_VER_LEN[15:0] contains the version and length of the EDS SE, where iC-TW39 sets EDS_VER_LEN[15:8] to 0x01 after startup because the EDS SE occupies only a single bank. The EDS version on EDS_VER_LEN[7:0] can be configured as required (to 0x10 for EDS SE revision A1).

EDS_MAX_BUSY[7:0] (Maximum BiSS Timeout) is set by the iC-TW39 to 0xAA if BISS_CFG0.at = 0 (fixed timeout) and 1 if BISS_CFG0.at = 1 (adaptive timeout) and should not be changed. EDS_MAX_BUSY[15:8] (Maximum SCD Processing Time) is set by the iC-TW39 to 0x0004 and should not be changed.

EDS_TC_MTLEN[7:0] (Maximum BiSS Timeout) is set by the iC-TW39 to 0x0000 and should not be changed.

EDS_TC_MTLEN[15:8] (Multiturn Data Length) is calculated by the iC-TW39 based on BISS_CFG0.mtlen and should not be changed.

EDS_STLEN_DIAG[7:0] (Singleturn Data Length) is calculated by the iC-TW39 based on BISS_RES and should not be changed.

EDS_STLEN_DIAG[15:8] (SCD Feedback Length) is calculated by the iC-TW39 based on BISS_CFG1.fb and should not be changed.

EDS_INCOFF (Incremental Offset Address LSB) must be set to 0x0054 for proper operation of EDS SE in the iC-TW39.

EDS_TINTEXT[7:0] must be set to 0xD2 for proper operation of the internal temperature sensor in the iC-TW39. It is recommended to set EDS_TINTEXT[15:8] = 0x00 since the iC-TW39 does not support an external temperature sensor.

iC-TW39 preliminary Contract on the sensor of the sensor o

Rev B4, Page 30/55

Electronic Data Sheet EDS SE						
	B	iSS Slave Register			iC-TW	39 Register
Address ¹	EDS SE Parameter	Description	Value	Address	Bits	Name
0x00	EDS VER	EDS Version		0	7:0	
0x01	EDS LEN	EDS Length (Banks)	0x01	0x406A	15:8	EDS_VER_LEN
0x02	USR STA	User Data Start Address	0xFF		7:0	
0x03	USR END	User Data End Address	0xFF	0x406C	15.8	EDS_STA_END
0x04		Maximum BiSS Timeout	Calculated		7.0	
0x05	TRUSY S	Maximum SCD Processing Time	4	0x406E	15.8	EDS_MAX_BUSY
0x00		Minimum Cycle Time	4		7.0	
0x00		Multiturn Data Longth (Bits)	Calculated	0x4070	15.0	EDS_TC_MTLEN
0x07		Singleture Data Longth (Bits)	Calculated		7.0	
0x00		Singletum Data Length (Bits)	Calculated	0x4072	15.0	EDS_STLEN_DIAG
0x09	DIAG_LEN	SCD Feedback (Diagnosis) Length	Calculated		15.0	
UXUA	EN_IYP	Encoder Type		0x4074	7:0	EDS_ENTYP_SIP
0x0B	SIP_CNT[23:16]	Olara d Daria da la ang Dava lutian			15:8	
0x0C	SIP_CNT[15:8]	Signal Periods per Revolution		0x4076	7:0	EDS SIP
0x0D	SIP_CNT[7:0]				15:8	-
0x0E	SPD_MAX[15:8]	Maximum Speed		0x4078	7:0	EDS SPDMAX
0x0F	SPD_MAX[7:0]	-			15:8	
0x10	INC_OFF	Position Offset Address LSB	Must be 0x54	0x407A	7:0	EDS INCOFE
0x11	Reserved		0	0,4011	15:8	
0x12	Reserved		0	0×407C	7:0	EDS DESA DES1
0x13	Reserved		0	0,4070	15:8	
0x14	TLATEN	Typical Position Latency		0.4075	7:0	
0x15	Reserved		0	0X407E	15:8	EDS_ILATEN
0x16	Reserved		0		7:0	
0x17	Reserved		0	0x4080	15:8	EDS_RES2_RES3
0x18	T INT	Internal Temperature Start Address	Must be 0xD2		7.0	
0x19	T FXT	External Temperature Start Address	(0x00)	0x4082	15.8	EDS_TINTEXT
	Reserved		0		7.0	
0x1A 0x1B	Reserved		0	0x4084	15.8	EDS_RES4_RES5
	Reserved		0		7.0	
	Reserved		0	0x4086	15.0	EDS_RES6_RES7
	Deserved		0		7.0	
	Reserved		0	0x4088	15.0	EDS_RES8_RES9
	Reserved		0		15.0	
0x20	PDATE[31:24]			0x408A	7:0	EDS_PDATE[15:0]
0x21	PDATE[23:16]	Production Date			15:8	
0x22	PDATE[15:8]			0x408C	7:0	EDS PDATE[31:16]
0x23	PDATE[7:0]				15:8	
0x24	PID[31:24]			0x408E	7:0	EDS PID[15:0]
0x25	PID[23:16]	Product ID			15:8	
0x26	PID[15:8]			0x4090	7:0	EDS PID[31-16]
0x27	PID[7:0]			0,1000	15:8	200_110[01110]
0x28	STATUS_E1	Address of Error Byte 1	0x4C			
0x29	STATUS_E2	Address of Error Byte 2	0x4D			
0x2A	STATUS_E3	Address of Error Byte 3	0x4E			
0x2B	STATUS_E4	Address of Error Byte 4	0x4F			
0x2C	STATUS_W1	Address of Warning Byte 1	0x50			
0x2D	STATUS_W2	Address of Warning Byte 2	0x48			
0x2E	STATUS_W3	Address of Warning Byte 3	0x4A			
0x2F	STATUS W4	Address of Warning Byte 4	0x4B	-		
0x300x33	CMD0CMD3		0			
0x34	CMD ADDR	Address of Command Register	0x60			
0x35	REBOOT	Reconfigure from FFPROM	0xFF	-		
0x36	RESET	Initialize	0x04	-		
0x37	PRESET	Execute Preset	0x05	-		
0x38	SCIEAP	Clear Status	0x06	-		
0x30 0v20	Bosorvod		0.00			
0x390x3D	Deserved		0		7.0	
	CUKSUM	EDS Checkeum	0	0x4092	1.0	EDS_CHKSUM
UX3F					0.51	
Notes	Contents available	only it BISS_CEG1 eds = 1				

aus

BISS PASSTHROUGH MODE

If a full multi-bank BiSS slave with programmable EDS, extended OEM memory, and additional functionality is required, BiSS register communication can be serviced by a host processor connected to the iC-TW39's SPI port.

Following power up, the host processor can initiate BiSS passthrough mode by setting BISS_CFG2.passmode. The configured passmode selects whether only non-implemented registers or *all* BiSS slave registers are queried from the host processor.

BISS_CFG2.passmode (0x002A Bits 1:0)				
Value	Description			
3	Reserved (do not use)			
2	Passthrough for all BiSS registers			
1	Passthrough for non-implemented BiSS registers			
0	Passthrough disabled (default)			
Note	The setting is not stored in the EEPROM.			
	The interpolator must be restarted (command 0x04)			
	after changes.			

Table 11: BiSS Passthrough Mode

If BISS_CFG2.passmode = 2, the iC-TW39 passes *all* BiSS slave register accesses to the host processor via the iC-TW39's SPI interface. In this case, the host processor must implement the complete BiSS slave register (addresses 0x00...0x7F) as the iC-TW39 will *not* respond to any BiSS slave register accesses.

In BiSS passthrough mode, when the BiSS master reads or writes a BiSS slave register in the iC-TW39, the request is passed to the host processor via the BISS_PASS register for action. BISS_PASS contains the register address and data of the BiSS slave register access passed through to the SPI interface. The host must respond appropriately to these requests, which are then passed back to the BiSS master via the BISS_PASS register.

BISS_PASS Register (0x002E)			
Bits	Name	Description	
15	rd	BiSS read (not write)	
14:8	BISS_PASS.addr	BiSS address to read or write	
7:0	BISS_PASS.data BiSS data to read or write		
Note	Contents are not defined if passthrough mode is disabled.		

Table 12: BiSS Passthrough Register

BiSS passthrough communication is controlled by the BiSS read/write request (brw) bit in the SPI status byte. The brw bit can also be configured to activate xIRQ to interrupt the host processor. See STATUS/FAULT MONITOR on page 42 for more information.

Figure 19 shows the recommended implementation of a BiSS write to a host processor via the SPI interface in BiSS passthrough mode.

Figure 19: BiSS Passthrough Write

When the host receives a response with brw = 1, it must read the BISS_PASS register. If BISS_PASS.rd = 0, the request is a BiSS passthrough write and BISS_PASS.data contains the data to be written to the BiSS slave register at BISS_ADDR. In this case, reading BISS_PASS resets the brw bit. The host processor must then store BISS_PASS.data for future recall by the BiSS master. For example, if the BiSS master selects bank 7 by writing 0x07 to BiSS slave register 0x40, the host processor must remember this and return bank 7 data when the BiSS master subsequently reads register bank data (BiSS slave register addresses 0x00...0x3F).

Figure 20 shows the recommended implementation of a BiSS read from a host processor via the SPI interface in BiSS passthrough mode.

Figure 20: BiSS Passthrough Read

When the host receives a response with brw = 1, it must read the BISS_PASS register. If BISS_PASS.rd = 1, the request is a BiSS passthrough read and the host processor must then write the requested data to BISS_PASS.data. This passes the requested data to the BiSS interface and resets the brw bit. For example, if the BiSS interface requests the EDS bank by reading BiSS slave register 0x41, the host processor reads BISS_PASS = 0xC100 and then must write the bank number of the bank where the EDS starts to BISS_PASS.data.

Rev B4, Page 33/55

laus

ABSOLUTE DATA INTERFACE (ADI)

The **ADI** uses the A/U and B/V pins for the ADI Clock Output and Data Input respectively. These signals may need to be connected to a suitable driver/receiver depending on the connected absolute data device.

Using the ADI requires additional configuration as explained in the following.

Figure 21: Absolute Data Interface (ADI)

The ADI uses a BiSS/SSI master to read the revolution count from an external multiturn device such as the iC-PVL. The revolution count is used to initialize the absolute position at startup and for verification of proper counting of the iC-TW39 during operation. Synchronization bits ensure that the absolute position synchronization is correct even when the system is moving during synchronization or if there is misalignment of the external revolution counting device.

ADI operation is enabled if **MAIN_CFG.nio=3**, also changing the functionality of the A/U and B/V outputs (see Figure 21). The ADI must be configured for protocol (BiSS or SSI), clock frequency, number of revolution count bits, number of synchronization bits, etc. The configuration must always be compatible with the external multiturn device (\rightarrow MT sensor) for proper operation.

The registers used by the ADI are shown in Table 13.

Parameter	Value	Description	Comments
MAIN CEG nio	Fundo	Function of Outputs	
	3	3 = ADI Interface Mode	Enables the ADI operation
	012	0 = disabled 1 = A + B + 7 + 2 = U + V + W + W + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	
< ADI Setup >	•, •, =		
ADI CFG.biss	0.1	ADI Master Protocol: 0 = SSI. 1 = BiSS C	
ADI CFG.freq	0.1	ADI Clock Frequency: $0 \approx 150 \text{ kHz}$. $1 \approx 1.5 \text{ MHz}$	
ADI CFG.mode	0	ADI Update Mode = Only after 1st ADI position read	
	(1)	(1 = All ADI reads update the counter)	
ADI LEN.rc		ADI Revolution Count Bits	The revolution counter length must be config-
-			ured equally or smaller (\rightarrow GB_CFG.rclen)
range	06	0 bits, 4 bits, 8 bits, 12 bits, 16 bits, 20 bits, 24 bits	
GB_CFG.syncbits		Revolution Counter Synchronization Bits	Misalignment tolerance of MT vs. ST angle:
range	03	0 = 4 bits, 13 = 13 bits	±168.75°, ±90°, ±135°, ±157.5°
ADI_LEN.sgap		ADI Synchronization Gap Bits	Bits to be ignored if the MT sensor
range	015	none 15 bits maximum	provides more than 4 syncbits.
ADI_LEN.fbk		ADI Error And Warning Bits	
range	02	0 = none, 1 = 1 bit (error), 2 = 2 bits (error + warning)	
< ADI Data Processin	ng >		
IPO_CFG.dir		Interpolated Angle Counting Direction	
	0, 1	0 = normal, 1 = inverted	
GB_CFG.clear	0	Revolution Counter Clear Mode = never	Setting required for ADI.
	3	3 = always (abs = rel)	Default for BiSS and ABZ/UVW output.
ADAPT_CFG.iacal	1	Use ADI or SPI gearbox write to calibrate IA_PHASE	Setting required for ADI.
IA_PHASE	0	Interpolated Angle Phase Shift	Alignment of zero angle (ST) to ADI data
			(MT).
range	016383	(positive integers)	Can be auto calibrated.
CALIB_CFG		Auto Calibration Mode	
	0xE5	IA Phase Calibration Mode	Other calibration functions disabled.
	0xE1	Regular Calibration Mode	

Table 13: <ADI> Parameters

Rev B4, Page 34/55

laus

ADI Setup

ADI_CFG.biss determines whether the ADI is a BiSS or SSI master. Choose the protocol used by the external MT sensor.

The BiSS protocol implemented by the ADI ignores the CDS bit and does not send a CDM bit (no control data communication). A 6-bit CRC must be provided by the external MT sensor but is ignored. As shown in Figures 22 and 23, the ADI CLK output remains high after the last configured data bit is received, forcing the external MT sensor into timeout.

ADI_CFG.freq determines the BiSS/SSI clock frequency of the ADI. Choose a clock frequency that is compatible with the external MT sensor.

ADI_CFG.mode determines whether just the first or all valid ADI position reads update the revolution counter.

If ADI_CFG.mode = 0, *all* valid ADI position reads (STAT_VAL.adi = 0) update the counter and the MT position jumps immediately to the new ADI position. If ADI_CFG.mode = 1, only the *first* valid ADI position read (STAT_VAL.adi = 0) after startup updates the counter and the MT position jumps immediately to the new ADI position. Subsequent valid ADI position reads are only compared to the revolution counter value and do not update the MT position.

Following all counter writes, the new position written (npw) bit in the SPI status byte is set to confirm the counter update. npw remains set until explicitly cleared by setting the clear bit (clr) in the SPI control word. npw is not set for counter compares.

Regardless of ADI_CFG.mode, after the first valid write to the revolution counter (npw = 1 in the SPI status byte), STAT_VAL.match is activated if a subsequent valid ADI position does not match the current position.

ADI_LEN is used to configure the length (number of bits) expected in the different fields in the ADI data frame. Set the ADI_LEN field lengths to match the external MT sensor.

Note: The MSBs of the ADI revolution counter bits are ignored if the revolution counter length is configured smaller.

GB_CFG.syncbits determines the number of synchronization bits used when initializing or updating the revolution counter from the ADI (or SPI). The configuration should match the number of synchronization bits supplied by the external MT sensor. The synchronization bits ensure a proper counter updating even when the drive is running, and when the external MT sensor is misaligned. Whenever available, using more synchronization bits is recommended to increase the misalignment tolerance (see comment in Table 13).

A maximum of four synchronization bits can be processed by iC-TW39. If the external MT sensor provides more bits to be clocked out, **ADI_LEN.sgap** must be configured to ignore the number of unused least significant bits (see gap bits in Figure 22, and 23).

ADI_LEN.fbk configures for optional status feedback bits, usually a low-active error (nE) and a low-active warning (nW) bit, when output from the external MT sensor.

If ADI_LEN.fbk = 1, STAT_VAL.adierr = 1 when the nE bit in the ADI data frame is active (0) or if the external MT sensor is not ready (refer to next section). If ADI_LEN.fbk = 2, the nE bit is evaluated as described, and the additional nW bit sets STAT_VAL.adiwrn = 1 when active (0).

ADI Data Processing

IPO_CFG.dir determines the counting (rotation) direction of the interpolated angle. It must be set to match the counting direction of the connected MT sensor. Reversing the code direction of the BiSS/SSI data output is possible independently (refer to section BiSS/SSI Interface).

Note: Always restart the interpolator (command 0x04) after changing the interpolator counting direction.

GB_CFG.clear determines how and when (if ever) crossing the zero angle resets the revolution counter. GB_CFG.clear = 0 (never) must be used when the absolute position is supplied to the iC-TW39 via the ADI (or SPI).

ADAPT_CFG.iacal = 1 setting required for ADI. Phase auto calibration aligns the 0° angle of the interpolator with the rollover point of the cycle counter of the external absolute position device or the most recent SPI gearbox write.

IA_PHASE contains the interpolated angle phase shift. This phase shift moves the 0° angle of the interpolator versus the magnet's field angle. That way the axis angle and the revolution counting rollover can be aligned to the external rollover point of the MT sensor.

Rev B4, Page 35/55

The actual phase shift, *iaphase*, is calculated as

 $iaphase[^{\circ}] = IA_PHASE \cdot \frac{360^{\circ}}{16,384}$

Aligning the 0° angle of the interpolator to the external MT sensor is possible using IA Phase Calibration Mode (see Table 13). When enabled and started (by pin NCLB or command), the motor axis needs to spin the magnet and the MT sensor for a few revolutions for settling IA_PHASE. However, programming a fixed, system-specific phase shift may work too (e.g. when using iC-PVL scanning the same magnet). (timeout). If either of these conditions is not true, the external MT sensor is assumed to be not ready and STAT_VAL.adierr = 1.

To avoid a permanent latched ADI error on startup, STAT_LATCH.adierr = 0 until the first valid data frame is received from the external MT sensor.

As an example for SSI mode, if

 $\begin{array}{l} \text{ADI_LEN.rc} = 3 \rightarrow \textit{adircbits} = 12 \\ \text{GB_CFG.syncbits} = 0 \rightarrow 4 \textit{ syncbits} \\ \text{ADI_LEN.sgap} = 4 \rightarrow 4 \textit{ bits} \rightarrow \textit{adisyncbits} = 8 \\ \text{ADI_LEN.fbk} = 2 \end{array}$

Application Examples

The external MT sensor is ready if the ADI DATA pin (B/V) is high at the first falling edge of the ADI CLK output pin (A/U) and low after the last rising CLK edge

the ADI expects 12 + 4 + 4 + 2 = 22 bits in the data frame as shown in Figure 22. All data fields are expected MSB first in the data frame. The external MT sensor must provide eight sync bits, but only four are used by the iC-TW39.

Figure 22: Expected SSI Data Frame

The ADI DATA input must be **high** at the first falling ADI CLK edge, otherwise the external MT sensor is assumed to be not ready (STAT_VAL.adierr = 1). After reading the expected number of bits, the ADI CLK output remains high, forcing a timeout. During timeout, the ADI DATA input must remain **low**, otherwise a fault in

the external MT sensor is assumed (STAT_VAL.adierr = 1) and the ADI data is considered invalid.

The expected ADI data frame in BiSS mode is shown in Figure 23.

Using the same example as for SSI mode, in **BiSS mode** the ADI expects 12 + 4 + 4 + 2 + 6 = 28 bits in the data frame as shown in Figure 23. All data fields are expected MSB first in the data frame. Six CRC bits must follow the last configured bit in the data frame, but are ignored by the iC-TW39.

The ADI DATA input must be **high** for the first two falling ADI CLK edges, otherwise the external MT sensor is assumed to be not ready (STAT_VAL.adierr = 1). After reading the expected number of bits, the ADI CLK output remains high, forcing a timeout. During timeout, the ADI DATA input must remain **low**, otherwise a fault in the external MT sensor is assumed (STAT_VAL.adierr = 1) and the ADI data is considered invalid.

THE COMMAND REGISTER

The command register is used to start or stop the iC-TW39 interpolator, save the configuration parameters to EEPROM, perform auto calibration, etc. To execute a command, write the appropriate value to COMMAND[7:0]. When the command has been executed, COMMAND[7:0] is reset to 0x00 by the iC-TW39 and a new command may be sent.

COMMAND (0x4000 Bits 7:0)			
Value	Description		
Unprotected Commands			
0x00	Read: Command register ready/idle		
	Write: Command termination		
0x04	Start/restart interpolator		
0x05	BiSS position preset		
0x06	Clear latched status and faults		
Protected Comn	nands ¹		
0x02	Stop interpolator		
0x0A	Copy COR values to BASE registers		
0x0B	Read configuration and COR registers from		
	EEPROM		
0x0C ²	Write configuration and COR register values to		
	EEPROM		
0x0D ²	Write all COR register values to EEPROM		
0x0E ²	Write selected COR register values to		
	EEPROM		
0x10	Auto calibrate selected parameters		
¹ Command does nothing unless unlocked by $BISS_KEY = 0xB4$.			
² Command does nothing unless the EEPROM is unlocked			
by TEST.we = 1.			
Do not issue any undescribed command value.			
Do not issue follow-up commands unless 0x00 reads zero.			

Table 14: Command Register

Command 0x00 aborts a command execution in progress (e.g. 0x10 for auto calibration). Reading the COMMAND register returns the command value in execution or 0x00 for the idle state.

Command 0x02 stops the interpolator. When the interpolator is stopped, the ABZ/UVW outputs are in a high impedance state. The NERR output remains operational.

Command 0x04 re-calculates all derived parameter values and then starts or restarts the interpolator using the current configuration values.

Command 0x05 executes a position preset by loading the BiSS preset phase shift registers (BISS_NRPPH and BISS_RCPPH) with the negative of the current absolute position. After this command is executed, the BiSS Interface outputs a zeroed MT and ST position. The new preset register values are written to the EEP-ROM and are available at power-up.

Command 0x06 clears all the latched status bits in the STAT_LATCH register. After executing this command, STAT_LATCH = 0 if no status conditions are active.

Command 0x0A copies the values in the correction parameter registers to the corresponding base registers as shown below.

Command 0x0A				
Correction Register	Base Register			
S_OFS_COR	\rightarrow S_OFS_BASE			
C_OFS_COR	\rightarrow C_OFS_BASE			
SC_BAL_COR	$ ightarrow$ SC_BAL_BASE			
SC_PH_COR	\rightarrow SC_PH_BASE			

Table 15: Command 0x0A

Note that command 0x0A does *not* store the new base register values to EEPROM; this must be done using command 0x0C.

Command 0x0B reads the configuration and COR registers from the internal EEPROM and starts the interpolator.

Command 0x0C writes the values of the configuration and COR registers to the internal EEPROM and may take up to 1 second to complete.

Command 0x0D writes all the COR register values to the internal EEPROM, and may take up to 1 second to complete.

Command 0x0E writes the values of the COR registers to the internal EEPROM, and may take up to 1 second to complete.

Command 0x10 initiates auto calibration of the correction parameters. This command must be manually terminated after calibration is complete by writing 0x00 to COMMAND[7:0]. When this command is terminated, the COR register values are copied to the corresponding BASE registers, and both register values are transferred to the EEPROM. Allow 1 second to complete.

AUTO CALIBRATION AND ANGLE ERROR CORRECTION

Parameter	Default	Description	Comments
SC_GNA_COR	5	Analog Correction: S/C Gain	These parameters will be auto calibrated by
range	023		iC-TW39 on command (or NCLB button).
S_OFSA_COR	0	Analog Correction: Sine Offset	
C_OFSA_COR	0	Analog Correction: Cosine Offset	
range	±31	6-bit 2's complement value sign-extended to 16 bits	
SC_GN_COR	100	Digital Correction: S/C Gain	
range	04095		
SC_BAL_COR	0	Digital Correction: S/C Balance	These parameters will be auto calibrated and
S_OFS_COR	0	Digital Correction: Sine Offset	dynamically auto adapted.
C_OFS_COR	0	Digital Correction: Cosine Offset	
SC_PH_COR	0	Digital Correction: S/C Phase	
range	±2047	12-bit 2's complement value sign-extended to 16 bits.	
CALIB_CFG.inl	0	Advanced INL Calibration	Constant speed required for calibration.
range	0, 1	0 = disabled, 1 = enabled	

Note: All COR parameters of this table will be auto calibrated by iC-TW39. Default means factory default configuration if provided.

Table 16: <Auto Calibration and Angle Error Correction> Parameters

Once the iC-TW39 has been configured and installed to the magnet, the TMR sensor signals must be calibrated to determine proper values for gain, offset correction, channel balance, and phase correction. This is most easily done using the auto calibration feature of the iC-TW39 to automatically determine optimum values for these parameters.

The registers used by auto calibration are shown in Table 16.

The COR registers contain the angle error correction parameters. The correction values are determined when auto calibration is performed and are updated during operation by auto adaption.

Calibration Procedure

Auto calibration can be initiated in hardware using the NCLB input or via a software command using the BiSS Interface.

With auto calibration initiated, provide ten or more magnet revolutions and the iC-TW39 tunes the correction parameters to provide lowest angular error and jitter in the interpolated AB and/or UVW outputs.

The magnet rotation applied for auto calibration does not need to be at a constant speed nor must it be unidirectional. However, a minimum of 1.5 revolutions without direction reversal is required for auto calibration to make any changes in the correction parameter values.

After providing sufficient magnet revolutions, auto calibration is terminated by releasing the NCLB input or a software command and the tuned correction values will be automatically stored to the internal EEPROM for use on subsequent startups.

Advanced INL Calibration

When enabling INL calibration in addition, the magnet must be rotated at constant speed. The drive's speed ripple may not exceed 0.5%, and so running higher speeds is usually helpful to benefit from any inertia of rotating masses. Note that several revolutions without direction reversal are required for settling. It is recommended to validate the INL calibration procedure by measurements, e.g. using a reference encoder.

After providing sufficient magnet revolutions, auto calibration and INL calibration is terminated by releasing the NCLB input or a software command and the tuned correction values will be automatically stored to the internal EEPROM for use on subsequent startups.

Note: The INL calibration can be reset by writing 0x00 to address 0x070C (INL_AMP) and 0x070E (INL_PH).

Pin-Triggered Auto Calibration (NCLB pin)

Auto calibration is initiated by pulling the NCLB input low. A push-button switch and pull-up resistor connected between NCLB (as shown in Figure 9 on page 14) is an easy way to achieve this in series production.

The recommended sequence for pin-triggered auto calibration is:

- 1. Ensure all configuration registers have valid values for the desired application (e.g. download the default configuration provided by the GUI).
- 2. Pull NCLB input low.
- 3. Rotate the magnet as explained under Calibration Procedure.
- 4. Release the NCLB input (it is pulled high by the external pull-up resistor). The COR register values are copied to the corresponding BASE registers, and the COR and BASE register values are stored to the EEPROM. Do not interrupt the power supply, wait for at least 1 second.

Command-Triggered Auto Calibration

Auto calibration is accomplished using the BiSS Interface to send the auto calibration command (0x10) to the command register. After sending the command, rotate the magnet as for pin-triggered auto calibration.

When calibration is complete, stop auto calibration by writing 0x00 to the command register.

Finally, the EEPROM needs to be updated for use on subsequent startups. The recommended sequence for command-triggered auto calibration is:

- 1. Ensure all configuration registers have valid values for the desired application (e.g. download the default configuration provided by the GUI).
- 2. Initiate auto calibration by writing 0x10 to the command register (0x4000).
- 3. Rotate the magnet as explained under Calibration Procedure.

- 4. Terminate auto calibration by writing 0x00 to the command register.
- 5. Copy the calibrated COR register values to the BASE registers by writing 0x0A to the command register.
- Store the chip configuration and the calibrated COR and BASE register values to the internal EEPROM by writing 0x0C to the command register.

Note: After calibration, all the residue registers of the Error Monitoring (see RESI registers in Table 20) will be near zero. If this is not the case, auto calibration should be repeated.

BASE Registers

The newly calibrated values are also copied to the corresponding BASE registers when auto calibration is terminated as shown below.

Correction Register	Base Register
S_OFS_COR	\rightarrow S_OFS_BASE
C_OFS_COR	\rightarrow C_OFS_BASE
SC_BAL_COR	\rightarrow SC_BAL_BASE
SC_PH_COR	\rightarrow SC_PH_BASE

Table 17: Auto Load BASE Registers

For automatic angle error correction in operation, values for the **BASE and LIM** registers must be available from the EEPROM. Initially, it is recommended to set the BASE registers to 0 and the LIM registers to 2047 to avoid unintentional excess adaption faults. Once auto adaption is working properly, the LIM values can be reduced as required to enable the excess adaption monitor. Refer to the following section for further information on error and adaption monitoring.

Rev B4, Page 39/55

Haus

EXCESSIVE ERROR AND ADAPTION MONITOR

Parameter	Default	Description	Comments	
Sensor Amplitude Monitor				
SC_AMP_LOW	1200	Weak Signal Threshold	1200 = 50 % of nominal signal.	
range	02880	(positive integer)		
Excessive Error Mon	itor			
SC_OFS_TH	200	Sin/Cos Offset Residue Threshold	Alarm thresholds of uncompensated	
SC_BAL_TH	200	Sin/Cos Balance Residue Threshold	signal errors (RESI registers).	
SC_PH_TH	200	Sin/Cos Phase Residue Threshold		
IA_PH_TH	100	Interpolated Angle Phase Residue Threshold		
range	02047	(positive integers)		
Excessive Adaption Monitor				
S_OFS_BASE	0	Sine Offset Base Value	These values will be configured by iC-TW39	
C_OFS_BASE	0	Cosine Offset Base Value	upon releasing pin NCLB.	
SC_BAL_BASE	0	Sin/Cos Balance Base Value		
SC_PH_BASE	0	Sin/Cos Phase Base Value		
range	±2047	12-bit 2's complement value sign-extended to 16 bits.		
SC_OFS_LIM	2047	Sin/Cos Offset Limit	Stop limits for auto adaption.	
SC_BAL_LIM	2047	Sin/Cos Balance Limit		
SC_PH_LIM	2047	Sin/Cos Phase Limit		
range	02047	(positive integers)		
Temperature Monitor				
T_ALARM	1200	Alarm Temperature = approx. 120 °C	Adjustable between –50 °C to 150 °C.	
range	-5001500	2's complement value		

Parameter	Default	Description	Comments	
Sensor Amplitude Monitor				
SC_AMP *		Sin/Cos Vector Amplitude	Calculated by iC-TW39.	
range	04095			
Excessive Error Mon	itor			
S_OFS_RESI *	0	Sine Offset Residue	These values will be determined by	
C_OFS_RESI *	0	Cosine Offset Residue	iC-TW39 in application.	
SC_BAL_RESI *	0	Sin/Cos Balance Residue		
SC_PH_RESI *	0	Sin/Cos Phase Residue		
(IA_PH_RESI *)	0	(If using ADI: Interpolated Angle Phase Residue)		
range	±2047	12-bit 2's complement value sign-extended to 16 bits.		
S_OFS_MAX *	0	Max. Sine Offset Residue	These values will be determined by	
C_OFS_MAX *	0	Max. Cosine Offset Residue	iC-TW39 in application.	
SC_BAL_MAX *	0	Max. Sin/Cos Balance Residue		
SC_PH_MAX *	0	Max. Sin/Cos Phase Residue		
(IA_PH_MAX *)	0	(If using ADI: Max. IA Phase Residue		
range	±2047	12-bit 2's complement value sign-extended to 16 bits.		
Temperature Monitor				
T_NOW *	274	Current Temperature = approx. 27.4 °C	Temperature measurement data.	

*) Read only register. Values are not stored on the chip's EEPROM.

Table 19: < Monitor > Operation Parameters

Sensor Amplitude Monitor

The iC-TW39 continuously monitors its sensor signals by calculating **SC_AMP**, the Lissajous vector amplitude of the TMR sensor's sin/cos signals according to $\sqrt{\sin^2 + \cos^2}$. The calculation is continuously updated every 500 µs even when the magnet is not moving. Following auto calibration, the target amplitude of 2400 should have been reached due to gain adaption.

During operation, iC-TW39 evaluates the vector amplitude for signal loss and sensor failure detection.

The corresponding status bit STAT_VAL.scamp is activated if the vector amplitude increases to 120% (value 2880), or decreases to the weak signal threshold **SC_AMP_LOW** (value to be configured). Setting

Rev B4, Page 40/55

SC_AMP_LOW to 1200 configures a reasonable alarm threshold of 50 % the nominal vector amplitude.

Excessive Error Monitor

iC-TW39 continuously calculates the residual offset, balance, and phase error of the corrected sensor signals. These residues represent the **uncorrected sine and cosine signal errors**.

There are five read-only **RESI registers** representing the residual signal errors. All of these residues are near zero after auto calibration and are kept near zero during operation by permanent auto adaption. The residue registers are only updated after full revolutions of the magnet.

The residual interpolated angle phase error is also calculated and reflects the phase drift between the ST angle and, if there is any, an external MT sensor connected to the ADI.

The four **TH registers** configure the alarm thresholds for activation of the status bit **STATUS_VAL.resi** and the latching on **STATUS_LATCH.resi**. That way the NERR output can be enabled, should any of the residue values become excessive, i.e. exceeds the maximum error residue that should be allowed during operation.

In operation, the **.resi** status bit is set whenever the absolute value of one of the residues (RESI registers) exceeds its corresponding threshold (TH registers). See STATUS/FAULT MONITOR on page 42 for more information.

Residue and Residue Threshold Registers			
Residue Threshold Register			
SC OES TH			
30_013_111			
SC_BAL_TH			
SC_PH_TH			
(IA_PH_TH)			

Table 20: Residue and Residue Threshold Registers

Additionally, five **MAX registers** capture the maximum error residue values encountered since startup. These registers are useful for diagnosing transient issues or evaluating worst-case application performance.

Maximum residue registers contains signed values, but the determination of the maximum residue is based on the absolute value of the residue:

If $|*_RESI| > |*_MAX|$ then $*_MAX = *_RESI$.

MAX registers can be cleared by a restart command or when cycling power.

Excessive Adaption Monitor

The excessive adaption monitor detects when one or more of the error correction parameters has changed too much due to auto adaption during operation. Such excessive adaption is often the sign of a failing sensor or system. Excessive adaption is indicated by the status bit STAT_VAL.adapt and latched on STAT_LATCH.adapt.

The four **BASE registers** are used to store the initial sin/cos error correction parameters after the sensor has been installed and calibrated.

The three **LIM registers** configure the maximum allowed deviation of the sin/cos error correction parameters versus their base values. If a limit is reached in operation, the **.adapt** status bit for excessive adaption is set and the auto adaption of the corresponding error correction parameter stopped.

Note: The excessive adaption monitor is disabled when all BASE register values are set to 0 and all LIM register values to 2 047.

Configuration of Excessive Adaption Monitor

To configure this monitoring, the values for the base and limit registers must be entered and stored in the EEPROM.

Correction, Base, and Limit Registers			
Correction Register	Base Register	Limit Register	
S_OFS_COR	S_OFS_BASE	SC OES LIM	
C_OFS_COR	C_OFS_BASE		
SC_BAL_COR	SC_BAL_BASE	SC_BAL_LIM	
SC_PH_COR	SC_PH_BASE	SC_PH_LIM	

Table 21: Correction, Base, and Limit Registers

Use auto calibration to set the nominal error correction values in the correction (COR) registers. When auto calibration is terminated by releasing pin NCLB, the COR register values are automatically copied to the corresponding BASE registers.

Alternatively, the COR to BASE command (0x0A) can also be used to copy the COR register values to the corresponding BASE registers.

Configure the three limit (LIM) registers with the maximum parameter deviation that should be allowed for error correction.

Configure the desired action to take when this condition occurs using the **.adapt** status (bit 10) in the status registers. Store all these values to the internal EEPROM using one of the EEPROM write commands.

Rev B4, Page 41/55

Temperature Monitor

The iC-TW39 provides an on-chip temperature sensor and monitor. An alarm status condition is activated when the chip temperature exceeds the configured alarm temperature.

T_NOW is a read-only register containing the current temperature of the iC-TW39 in tenths of degrees Celsius. The actual chip temperature in °C, *tnow* is calculated as

$$tnow[^{\circ}C] = \frac{T_NOW}{10}$$

T_ALARM configures the alarm temperature in tenths of degrees Celsius. Its value is calculated as

$$T_ALARM = 10 \cdot talarm[^{\circ}C]$$

where *talarm* is the actual alarm temperature in °C.

In operation, the status bit STAT_VAL.talarm is activated whenever T_NOW \geq T_ALARM and deactivated whenever T_NOW < T_ALARM.

Rev B4, Page 42/55

Haus

STATUS/FAULT MONITOR

Devementer	Value	Description	Commente	
Parameter	value	Description	Comments	
Status				
STAT_VAL.xxx *	0, 1	Status register (current); 1 = active	Controlled by iC-TW39.	
STAT_LATCH.xxx *	0, 1	Status register (latched)		
Fatal Status				
STAT_FATAL.xxx *	0, 1	1 = Malfunction	Controlled by iC-TW39.	
Status Control			,	
STAT_CFG.autoclr	1	BiSS nE/nW Autoclear = on		
	0	BiSS nE/nW active according to STAT_LATCH		
STAT_CFG.long	0	Fault indication at NERR = for duration of condition		
	1	Fault indication at NERR = prolonged by 40 ms		
STAT_CFG.filter	0	Status Event Filtering = off		
	1, 2, 3, 4	Status Event Filtering = 10 µs, 150 µs, 2.5 ms, 40 ms		
Watchdog				
WATCHDOG *	127	127 = Chip is running	Controlled by iC-TW39.	
Status Evaluation and Action Masking				
STAT_SEL.xxx	0, 1	Selection of current or latched status (0 = current)		
STAT_IE.xxx	0, 1	Indication Enable for NERR (1 = enabled)	Recommended: .scamp = 1	
STAT_HIZ.xxx	0, 1	ABZ/UVW Output Shutdown (1 = enabled)		
STAT_BE.xxx	0, 1	Indication of Latched Status on BiSS error bit	Recommended: .irq = 1	
STAT_BW.xxx	0, 1	Indication of Latched Status on BiSS warning bit		

*) These registers are not stored in the chip's EEPROM.

Table 22: <Status and Fault Monitor>

Status Register

STAT_VAL contains bits that indicate the current status of the signal path. These bits are active for the duration of the specified condition. This register is also available at addresses 0x4C and 0x4D in the BiSS slave register.

STAT_VAL and STAT_LATCH							
Bit	Name	Description					
15	talarm	Temperature alarm					
14	-	Not in use					
13	irq	NERR fault input/output active					
12	adiwrn	Absolute data interface warning					
11	adierr	Absolute data interface fault					
10	scamp	Input amplitude out of range					
9	adapt	Adaption limit exceeded					
8	resi	Correction residue threshold exceeded					
7	-	Not in use					
6	match	ADI revolution count mismatch					
5	vsync	Velocity too high for synchronization					
4	lagfatl	Fatal position lag					
3	alim	Excessive acceleration					
2	vlim	Excessive velocity					
1	falarm	Input frequency alarm					
0	oflow	Signal path overflow					

Table 23: Status Register

STAT_VAL.talarm indicates that chip temperature is above the limit set in the T_ALARM register.

STAT_VAL.irq indicates that the NERR input/output is active (low) due either to an internal condition or to external activation of the NERR input/output. When pin NERR is low, STAT_VAL.irq = 1. See Evaluation of I/O pin NERR on page 45 for more information.

With the ADI in use, **STAT_VAL.adierr** and **.adiwrn** indicate that the error (nE) bit and the warning (nW) bit in the ADI data frame is active (0) or that the external multiturn sensor is not ready.

STAT_VAL.scamp indicates that the sin/cos vector amplitude (calculated by $\sqrt{sin^2 + cos^2}$) is outside the allowed tolerance of 50 % to 120 %.

See Sensor Amplitude Monitor on page 39 for more information.

STAT_VAL.adapt indicates that one or more of the correction parameters has deviated from its base value by more than its specified limit.

STAT_VAL.adapt								
Correction Register	Base Register	Limit Register						
S_OFS_COR	S_OFS_BASE	SC OES LIM						
C_OFS_COR	C_OFS_BASE							
SC_BAL_COR	SC_BAL_BASE	SC_BAL_LIM						
SC_PH_COR	SC_PH_BASE	SC_PH_LIM						

Table 24: Adaption Limit Exceeded

Specifically, whenever

$$\begin{split} |S_OFS_COR-S_OFS_BASE| > SC_OFS_LIM \\ |C_OFS_COR-C_OFS_BASE| > SC_OFS_LIM \\ |SC_BAL_COR-SC_BAL_BASE| > SC_BAL_LIM \\ |SC_PH_COR-SC_PH_BASE| > SC_PH_LIM \end{split}$$

See EXCESSIVE ERROR AND ADAPTION MONITOR on page 40 for more information.

STAT_VAL.resi indicates that one or more of the correction residue values has exceeded its alarm threshold.

STAT_VAL.resi							
Residue Register	Residue Threshold Register						
S_OFS_RESI							
C_OFS_RESI	30_013_111						
SC_BAL_RESI	SC_BAL_TH						
SC_PH_RESI	SC_PH_TH						
IA_PH_RESI	IA_PH_TH						

 Table 25: Correction Residue Threshold Exceeded

Specifically, whenever

$$\begin{split} |S_OFS_RESI| &> SC_OFS_TH \\ |C_OFS_RESI| &> SC_OFS_TH \\ |SC_BAL_RESI| &> SC_BAL_TH \\ |SC_PH_RESI| &> SC_PH_TH \\ |IA_PH_RESI| &> IA_PH_TH \end{split}$$

See EXCESSIVE ERROR AND ADAPTION MONITOR on page 40 for more information.

With the ADI in use, **STAT_VAL.match** indicates that the most recent data from an external multiturn position sensor did not match the internal revolution count (RC).

With the ADI in use, **STAT_VAL.vsync** indicates that iC-TW39 stopped the data synchronization to an external multiturn position sensor because the motor speed

Rev B4, Page 43/55

has exceeded the configured frequency limit.

STAT_VAL.lagfatl indicates a fatal lag condition at which all position outputs are invalid (unexpected direction reversal). This occurs if a .vlim status persists until the AB output position falls behind the input angle by more than 180 degrees.

STAT_VAL.alim indicates that the position lag is limited to a maximum of 22.5° due to excessive acceleration (e.g. due to an accidental motor blockage). This condition is not fatal and resolves with decreasing acceleration.

STAT_VAL.vlim indicates either that the AB output frequency is being limited (due to the configured AB_LIMIT), or the UVW output frequency exceeds 8.33 MHz. This condition is not fatal and the AB/UVW outputs are still valid, although if it persists, it will eventually cause a .lagfatl status condition.

STAT_VAL.falarm indicates that the motor speed exceeds the permissible maximum of 360 000 rpm.

STAT_VAL.oflow indicates that the signal path is saturated somewhere, most likely due to ADC overflow. This condition is not fatal, but does result in reduced interpolation accuracy.

Latched Status Register

STAT_LATCH contains the same status conditions as the STAT_VAL register, except that the bits are latched when activated and stay active until cleared. This register is also available at addresses 0x4E and 0x4F in the BiSS slave register.

Latched status bits can be cleared by writing 0 to the bit. Writing 1 to a bit does nothing, allowing bits to be cleared individually. Command 0x06 can be used to clear all latched status bits at once.

In addition, if BiSS nE/nW Autoclear is enabled (STAT_CFG.autoclr = 1), the STAT_LATCH register is cleared when either nE or nW has been active for at least one BiSS data frame. Note that the STAT_LATCH is set again if a condition persists.

If the optional Absolute Data Interface (ADI) is used, STAT_LATCH.adierr remains zeroed on startup until the first valid data frame is received from the ADI.

Rev B4, Page 44/55

Fatal Status Register

STAT_FATAL contains bits that indicate fatal faults, and one bit that indicates the bootup state. The STAT_FATAL register is also available at addresses 0x50 and 0x51 in the BiSS slave register.

Any fatal fault will inhibit startup of the iC-TW39 or stop it during operation. Fatal faults also activate NERR, disable the ABZ and UVW outputs, activate the BiSS Error (nE) and Warning (nW) bits, and activate the fatal fault bit (fflt) in the SPI status byte.

Fatal fault conditions must be cleared either by cycling power, toggling the reset input (NRST), or using the start/restart command. See THE COMMAND REGISTER on page 36 for more information.

STAT_FATAL							
Bit	Name	Description					
5	boot	Startup boot state active					
4	interr	Internal chip fault					
3	corchk	EEPROM correction values checksum fault					
2	cfgchk	EEPROM configuration checksum fault					
1	tune	EEPROM tuning values fault					
0	ee2bit	EEPROM read double bit error					

Table 26: Fatal Status Register

STAT_FATAL.boot indicates that the iC-TW39 startup sequence is in the bootup state.

STAT_FATAL.interr indicates that an internal fault occurred in the iC-TW39. The chip must be power-cycled to reset this condition.

STAT_FATAL.corchk indicates a checksum error of the correction parameters in the internal EEPROM. This fault is un-recoverable and the EEPROM must be re-programmed.

STAT_FATAL.cfgchk indicates a checksum error of the configuration parameters in the internal EEPROM. This fault is un-recoverable and the EEPROM must be re-programmed.

STAT_FATAL.tune indicates that the factory-set tuning parameters in the EEPROM have been corrupted. This fault is un-recoverable and the chip must be replaced.

STAT_FATAL.ee2bit indicates a double bit error occurred when reading the internal EEPROM. This fault is un-recoverable and the EEPROM must be re-programmed.

Status Control

A few general monitor configurations are available using **STAT_CFG**.

STAT_CFG.filter determines how long a status condition must have been continuously active before the corresponding bit in the STAT_VAL and STAT_LATCH registers is set. This filtering avoids nuisance tripping of the status bits.

STAT_CFG.long determines how long NERR is active when a configured status condition occurs. Prolonging NERR is useful to ensure that transient conditions are visible via the fault LED.

STAT_CFG.autoclr determines whether the BiSS error and warning bits (nE and nW) are automatically cleared after one BiSS data frame.

With autoclear disabled (by 0), the nE and nW bits remain active as long as any configured bit in the STAT_LATCH register is active. With autoclear enabled (by 1), the STAT_LATCH bits configured to activate nE (STAT_BE) and nW (STAT_BW) are cleared after every BiSS data frame. In this case, the nE or nW bits are active due to a configured STAT_LATCH condition for only one single-cycle data frame.

Watchdog

The **WATCHDOG** register is continuously updated by the iC-TW39 while it is operating correctly. Clear the watchdog register by writing 0 to it. After a minimum wait time of 1 ms, it should read 127 (0x007F) if the iC-TW39 is operating correctly. Any other value (0...126 or 128...65 535) indicates a serious internal malfunction.

Rev B4, Page 45/55

Status Evaluation and Action Masking

The STAT_SEL, STAT_IE, STAT_HIZ, STAT_BW, and STAT_BE registers are mask registers configuring the desired alarm action to take when a status bit comes active. All mask registers use the same bit name extensions as those in the STAT_VAL register.

The evaluation logic for a single status bit is shown schematically in Figure 24. This logic is the same for all continuously monitored status conditions reported to the STAT_VAL register, except for the .irq bit. As the internal interrupt .irq reflects the I/O pin status of NERR, it is evaluated slightly differently as shown in Figure 25.

Figure 24: Single Condition Status and Fault Logic

Evaluation of I/O pin NERR

To allow the open-drain NERR pin to function as both a system error input (i.e. interrupt request input) as well as an output, the logic for the .irq status bit is slightly different.

As shown in Figure 25, the selected irq bit is not used to activate the NERR pin. This allows the NERR pin to be used as an interrupt request input in hosted applications where the host polls the SPI status byte. Note that STAT FATAL bits can still activate the NERR output.

Figure 25: Interrupt Request Using NERR

Action Masking

The **STAT_SEL** register selects whether the dynamic status bits in STAT_VAL or the latched status bits in STAT_LATCH are used to alarm, i.e. to activate a fault LED connected at NERR.

If a given STAT_SEL bit is zero, the corresponding bit of the dynamic register STAT_VAL is used, otherwise the latched register STAT_LATCH.

In general, keeping STAT_SEL zeroed is recommended in stand-alone applications to obtain a dynamic non-latched LED indication.

The **STAT_IE** register enables (by 1) a current or latched status condition, as selected by STAT_SEL, to activate the fault output, NERR. An active fatal fault condition also activates the NERR output.

The **STAT_HIZ** register enables (by 1) a current or latched status bit, as selected by STAT_SEL, to shut down the ABZ/UVW outputs. Given this case, the ABZ/UVW outputs are in a high-impedance state.

The STAT_HIZ register provides an independent selection of which of the selected status conditions disable the ABZ/UVW outputs. Thus each status condition can be individually configured to activate the fault LED at NERR or disable the ABZ/UVW outputs, or both.

For the BiSS Interface, only the latched status conditions can be individually selected to set the active-low error (nE) and warning (nW) bits in the BiSS data frame. These bits can be configured to automatically clear, in which case they may be active for a single BiSS data frame only.

The **STAT_BE** register enables (by 1) a latched status bit in the STAT_LATCH register to activate the BiSS error bit, nE. The **STAT_BW** register enables (by 1) a latched status bit in the STAT_LATCH register to activate the BiSS warning bit, nW.

Note that an active fatal fault condition always activates both bits.

Rev B4, Page 46/55

laus

DEVICE IDENTIFICATION

Parameter	Value	Description	Comments					
Identification Numbers								
SERIAL		Read-only Serial Number	Factory programmed.					
CHIP_ID	0x001D	Chip Identification Number						
CHIP_REV	0x1031	Chip Revision Number	0x1031 = Y2					
DEV_SN	0	Device Serial Number						
DEV_ID	0	Device ID						
MFR_ID	0	Manufacturer ID						

Table 27: <Device ID>

SERIAL is the unique, factory assigned, 32-bit serial number of each iC-TW39. This provides full traceability for tracking specific sensors or when contacting iC-Haus for support.

CHIP_ID is a read-only register containing the iC-TW39 chip ID for identification purposes.

CHIP_REV is a read-only register containing the iC-TW39 chip revision for identification purposes.

A user-defined device serial number of 6 bytes, a device ID of 4 bytes, and the BiSS device manufacturer ID (2 bytes) can be assigned to **DEV_SN**, **DEV_ID**, and **MFR_ID**. Refer to section User Data Registers for description.

EEPROM	

Parameter	Value	Description	Comments
TEST.we	0	EEPROM Unlock	
		0 = locked (write protection enabled)	
		1 = unlocked (write protection disabled)	

Table 28: <EEPROM>

The iC-TW39 contains a built-in EEPROM for storage of configuration data. These values are read from the EEPROM automatically at startup and can be read and written using various commands.

The **TEST** register is *not* stored in EEPROM and is set to 0 at every startup. The EEPROM must be unlocked

by **TEST.we = 1** to write to it using the COMMAND register.

The EEPROM can also be written at the rising edge of the NCLB input regardless of the value of TEST.we. See AUTO CALIBRATION AND ANGLE ERROR COR-RECTION on page 37 for more information.

Rev B4, Page 47/55

Haus

PROGRAMMER's REFERENCE – REGISTER MAP

A complete memory map of the iC-TW39 is shown in Tables 29 and 30. Register features are shown in the Type column as follows:

E indicates that the register value is stored in the internal EEPROM and restored at startup or restart. Unless otherwise stated, these registers may be written by the user via the BiSS, SPI, or Encoder Link interfaces, but the modified values are not automatically stored to the EEPROM.

D indicates that the register is dynamic; its value may be modified by the iC-TW39 during operation. The user may also write to these registers to override the calculated value. **R** indicates that the register is dynamic and read-only. Its value may be modified by the iC-TW39 during operation but cannot be modified by the user.

V indicates that the register is read / write and volatile. The values are not stored in the EEPROM.

Registers without a code in the Type column may be read and written by the user.

Registers not shown are reserved and must not be accessed.

									Dece	intion								
Address	Register Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Rit Q	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Туре
0x0000	MAIN CEG	0	0	0	0	1	0	Dit 5	nio	Diti	0	1	0	0	1	0	1	F
0x0008	ABZ_CEG	0	0	0	0	1	znol	bnol	anol	dir	7W	dth	1	0	0	0	1	F
0x000A	ABZ_RES[15:0]						2001	AB	Output Re	solution (LS	SW)	uui		<u> </u>				F
0x000C	ABZ_RES[19:16]						Must	be 0			,			ABC	Output Reso	olution (MS	Bits)	E
0x000E	ABZ PH							AB	Z phase sh	nift (0655	35)						,	E
0x0010	AB LIMIT		1									AB frequ	ency limit					E
0x0012	UVW CFG		1							1	pol	dir			pairs			E
0x0016	UVW PH		UVW phase shift (0, 65 535)										E					
0x0018	BISS_CEG0							-	ssi	at	dir	0	0		mt	len		F
0x001A	BISS_CEG1											1	-	0	0	b b	n	E.D
0x001C	BISS RES[15:0]			1	1		BiSS Sir	gleturn Re	solution (In	crements p	er Revoluti	on) LSW	I	-	-	-	F	E
0x001E	BISS RES[25:16]			Must	be 0					BiSS Sing	leturn Reso	olution (Inc	rements pe	r Revolutio	n) MS Bits			E
0x0020	BISS_NRPPH[15:0]							BiSS Ar	gle Preset	Phase Shi	ft (LSW)				,			E, D
0x0022	BISS_NRPPH[25:16]			Must	be 0				-		BiSS Ang	le Preset F	hase Shift	(MS Bits)				E, D
0x0024	BISS_RCPPH[15:0]							BiSS Mul	titurn Prese	et Phase Sh	nift (LSW)							E, D
0x0026	BISS_RCPPH[31:16]							BiSS Mult	iturn Prese	et Phase Sh	ift (MSW)							E, D
0x0028	BISS_DLEN					Must	be 0							BiSS Da	ta Length			R
0x002A	BISS_CFG2															passi	mode	V
0x002E	BISS_PASS	rd			BiSS	register ad	dress						BiSS reg	ister data				D
0x0042	BISS_KEY											BiS	S Register	Protection	Key			
0x0054	TEST																we	
0x0100	STAT_CFG												autoclr	long		filter		E
0x0102	STAT_SEL	talarm	cl	irq	adiwrn	adierr	scamp	adapt	resi	zero	match	vsync	lagfatl	alim	vlim	falarm	oflow	E
0x0104	STAT_IE	talarm	cl	irq	adiwrn	adierr	scamp	adapt	resi	zero	match	vsync	lagfatl	alim	vlim	falarm	oflow	E
0x0106	STAT_HIZ	talarm	cl	irq	adiwrn	adierr	scamp	adapt	resi	zero	match	vsync	lagfatl	alim	vlim	falarm	oflow	E
0x0108	STAT_BE	talarm	cl	irq	adiwrn	adierr	scamp	adapt	resi	zero	match	vsync	lagfatl	alim	vlim	falarm	oflow	E
0x010A	STAT_BW	talarm	cl	irq	adiwrn	adierr	scamp	adapt	resi	zero	match	vsync	lagfatl	alim	vlim	falarm	oflow	E
0x010E	STAT_VAL	talarm	cl	irq	adiwrn	adierr	scamp	adapt	resi	zero	match	vsync	lagfatl	alim	vlim	falarm	oflow	D
0x0110	STAT_LATCH	talarm	Cl	ırq	adiwrn	adierr	scamp	adapt	resi	zero	match	vsync	lagfatl	alim	vlim	falarm	oflow	D
0x0112	STAT_FATAL											DOOL	Interr	COTCTIK	CIGCIIK	tune	eezoii	
0x0114														abs	rei	run	from	
0x0200										000				DISS	0	noue	lieq	
0x0202						•				000	-		39 I	dir	0		1	
0x0400	GR CEG) bite	E E			
0x0708	HYST								0	Output Hysteresis					50113	F		
0x4000	COMMAND								Command register									
0x4004	ADAPT CEG										iacal=1	1	1	1	1	1	1	F
0x4006	CALIB CEG							0	0	appre	1	1	0	inl	0	0	1	F
0x4008								Δlarm	Temperat	ure (_500	1500)							F
0x4000	SC AMP LOW		Mue	be 0				740111	remperati	Neak Signs	Threshold	1/0 50 0		:)				
0x4010			IVIUS	Muet be 0			1			court orgina		tal offect lin	nit (0 204	7)				
0x4010	SC OFS TH			Must be 0						Sin/(ni //COS ulgi	esidue thre	shold (0 2	2047)				E
0x4012	SC BALLIM			Must be 0						000	Sin/Cos h	alance limit	(0 2047)	.047)				E
0x4014	SC BAL TH			Must be 0						Sin/C	ons balance	residue thr	eshold (0	2047)				F
0x4018	SC PH LIM			Must be 0							Sin/Cos r	hase limit	(02047)					F
0x401A	SC PH TH			Must be 0						Sin/C	cos phase r	esidue thre	shold (0	2047)				E
0x401C	IA PH TH			Must be 0						Interpolate	ed angle ph	ase residu	e threshold	(02047)				E
0x401F	S OFS BASE							Sine	offset base	e value (+2	2047)			. /				E
0x4020	C OFS BASE							Cosine	e offset bas	se value (+	2047)							E
0x4022	SC_BAL_BASE							Sin/Cos	balance b	ase value (±2047)							E
0x4024	SC_PH_BASE							Sin/Co	s phase ba	se value (=								E
0x4026	S OFS COR	İ						Sine digita	offset con	rection valu	e (±2047)							E, D
0x4028	S_OFSA_COR							Sine analo	og offset co	prrection va	lue (±31)							E, D
0x402A	C_OFS_COR						(Cosine digit	al offset co	rrection val	ue (±2047)						E, D
0x402C	C_OFSA_COR							Cosine ana	log offset o	correction v	alue (±31))						E, D
0x402E	SC_BAL_COR							Sin/Cos ba	alance corr	ection value	e (±2047)							E, D

Table 29: Register Map

iC-TW39 preliminary C-TW39 Company 24-BIT MAGNETIC ON-AXIS ANGLE SENSOR

Rev B4, Page 48/55

Addroop	Pagiatar Nama		Description							Tuno							
Auuress	Register Name	Bit 15 Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
0x4030	SC_GN_COR	Must be 0 Sin/Cos digital gain correction value (04095)										E, D					
0x4032	SC_GNA_COR					Must be 0)					Sin/	Cos analog	gain correc	tion value (*	(023)	E, D
0x4034	SC_PH_COR						Sin/Cos	phase corr	ection value	(±2047)							E, D
0x403C	SERIAL[15:0]						(Chip serial i	number (LS\	V)							R
0x403E	SERIAL[31:16]						C	hip serial r	umber (MS)	N)							R
0x4048	SC_AMP						Sin/C	os vector a	mplitude (0.	4095)							R
0x404E	S_OFS_RESI						Si	ne offset re	sidue (±20	47)							R
0x4050	C_OFS_RESI						Co	sine offset i	esidue (± 2	047)							R
0x4052	SC_BAL_RESI						Sin/C	cos balance	e residue (\pm	2047)							R
0x4054	SC_PH_RESI						Sin/	Cos phase	residue (±	2047)							R
0x4058	IA_PH_RESI						Interpola	ed angle p	hase residu	e (±2047)							R
0x405E	S_OFS_MAX						Maxim	um sin offs	et residue (±2047)							D
0x4060	C_OFS_MAX						Maxim	um cos offs	set residue (±2047)							D
0x4062	SC_BAL_MAX		Maximum sin/cos balance residue (±2047)							D							
0x4064	SC_PH_MAX		Maximum sin/cos phase residue (±2047)								D						
0x4066	IA_PH_MAX		Maximum IA phase shift residue (±2047) D								D						
0x4068	T_NOW		Current Chip Temperature (-5001500) R								R						
0x4094	PROFILE							BiSS I	Profile ID								E, D
0x4096	DEV_SN[15:0]	Seria	I Number[23	:16] (User-o	lefined dev	rice serial r	umber)			Serial	Number[31	:24] (User-	defined dev	ice serial n	umber)		E
0x4098	DEV_SN[31:16]	Seri	al Number[7	:0] (User-de	fined devi	ce serial nu	ımber)			Seria	I Number[1	5:8] (User-	defined devi	ce serial nu	umber)		E
0x409A	DEV_ID[15:0]		Device ID	[39:32] (Us	er-defined	device ID)					Device ID	0[47:40] (U	ser-defined	device ID)			E
0x409C	DEV_ID[31:16]		Device ID	[23:16] (Us	er-defined	device ID)					Device ID	0[31:24] (U	ser-defined	device ID)			E
0x409E	DEV_ID[47:32]		Device I	D[7:0] (Use	r-defined d	evice ID)					Device I	D[15:8] (Us	er-defined of	levice ID)			E
0x40A0	MFR_ID	Ma	anufacturer II	D[7:0] (Use	-defined m	anufacture	er ID)			Mar	nufacturer II	D[15:8] (Us	er-defined r	nanufacture	er ID)		E
0xE000	CHIP_ID							iC-TW3	9 Chip ID								R
0xE002	CHIP_REV		iC-TW39 Chip Revision R														

Table 30: Register Map (continued)

Rev B4, Page 49/55

PROGRAMMER's REFERENCE – SPI COMMUNICATION

The SPI port is a 4-wire slave interface which operates in CPOL = 0 and CPHA = 0 mode only. This means that the base (resting) value of SCLK is low, SI is sampled on the rising edge of SCLK, and SO is changed on the falling edge of SCLK. The active-low Slave Select input, NCS, is used by the host processor to enable the SPI port to initiate communication. SPI communication uses an overlapped packet protocol where the response to a command is returned while the next command is being sent. Figure 26 shows this for a single-device application, where the host controls a single iC-TW39 slave (see Figure 11).

Figure 26: SPI Overlapped Packet Protocol

SPI command and response packets are always 64 bits long and are sent most-significant bit first. The host initiates communication with the iC-TW39 by driving Slave Select (NCS) low and then clocking a 64-bit packet (Command 1) to the Slave Input, SI. The host drives NCS high at the end of the command packet and the iC-TW39 executes the command.

After waiting for the command to be executed, the host again drives NCS low and sends the next packet (Command 2) to SI while at the same time reading the 64-bit response (Response 1) to the initial command on the Slave Output, SO.

The iC-TW39 always returns a response packet while reading a command packet. The response packet returned while writing the first command packet is not defined. A simpler non-overlapped protocol that is easier to implement in the host processor can be used when high SPI bandwidth is not necessary. With this protocol, every other command and response is ignored, as shown in Figure 27.

This provides a more straightforward write-readwrite-read protocol, but at half the maximum bandwidth of the overlapped packet protocol. Note that any command can be specified instead of the alternating null write, but a null write (64 zeroes) is easy to implement in the host processor.

Note: The host must not pulse NCS low without shifting 64 bits of data into SI. Doing so will cause unpredictable results and an unstable device. After the host drives NCS low, 64 SCLKs *must* be received by the iC-TW39 before NCS is driven high again. **Note:** NCS must also be high when NRST is released.

Figure 27: Simple SPI Protocol

Rev B4, Page 50/55

The available commands are shown in Figure 28 and explained in detail on the following pages.

Figure 28: SPI Command Reference

SPI Command Packet Formats

SPI command packets are formatted as shown in Figure 29.

Figure 29: Command Packet Format

SPI Control Word

The SPI control word is the first 16 bits of every SPI command packet.

Command	SPI Control Word							
Bit	Bit	Name	Description					
63	15	anc	Set anchor position					
62	14	clr	Clear npw and bdf bits					
61	13	reg	Register write					
60:58	12:10	rm	Read mode					
57:56	9:8	wm	Write mode					
55:48	7:0	-	Reserved (must be 0)					

Table 31: SPI Control Word

The type of data written by the SPI command is determined by the write mode (wm) field in the SPI control word as shown below.

SPI Write Modes					
wm	Description				
3	Register Write				
0	Null Write (read only)				

Table 32: SPI Write Modes

The type of data returned in the next response packet is determined by the read mode (rm) field and the reg bit in the SPI control word.

SPI Read Modes					
rm	Description				
75	Reserved (do not use)				
4	Position Read				
30	Reserved (do not use)				

Table 33: SPI Read Modes

All values are read on the falling edge of NCS. However, the internal update rates of the various values are different. In all cases, the value read is the most recently updated internal value. See Response Packet Formats on page 51 for more details on the internal update rates.

Rev B4, Page 51/55

If reg = 1, register data is returned along with the data specified by the read mode field. See Register Read on page 52 for more information.

If clr = 1, the next falling edge of NCS also clears the npw and bdf bits in the SPI status byte.

Null Write (Read Only)

The Null Write command packet is formatted as shown below.

Null Write: wm = 0			
Bits	Description		
63:48	SPI Control Word		
47:0 Ignored			

Table 34: Null Write Command Packet

The Null Write (Read Only) command does not write any data to the iC-TW39. The command bits in the command packet are ignored, but must be present to complete the 64-bit packet. The data specified by the read mode field in the control byte is returned with the next SPI command.

Register Write

The Register Write command packet is formatted as shown below.

Register Write: wm = 3			
Bits	Description		
63:48	SPI Control Word		
47:32	Register Address		
31:16	Register Data		
15:0	Reserved (must be 0)		

Table 35: Register Write Command Packet

The specified register data is written to the register at the specified register address *and* the data specified by the read mode field in the control word is returned in the next response packet.

Response Packet Formats

The format of the response packet is determined by the read mode field and reg bit in the control byte of the previous command packet.

NCS	٢٢
SCLK	
Bit	6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4
SO	Response to Previous Command SPI Status Byte
SI	SPI Control Word Command

Figure 30: Response Packet Format

SPI Status Byte

The last six bits of every SPI response packet contain the six LSBs of the SPI status byte. The SPI status byte reports an active status or fatal fault condition as well as other conditions useful in hosted applications.

Response	SPI Status Word		tatus Word
Bit	Bit Name		Description
7:6	7:6	-	0 (Reserved)
5	5	fflt	Fatal fault occurred
4	4	stat	Active status condition
3	3	npw	New position written
1	1	bdf	New BiSS data frame
0	0	brw	BiSS read/write request

Table 36: SPI Status Byte

If fflt = 1, one or more of the bits in the STAT_FATAL register is set, indicating that a fatal fault occurred.

If stat = 1, one of the configured status conditions is active. See STATUS/FAULT MONITOR on page 42 for more information.

If npw = 1, the counter has been updated with new native position values (RC) from the absolute data interface.

If bdf = 1, a new BiSS SCD frame has been requested by the BiSS master.

If brw = 1, a BiSS register read or write has been requested by the BiSS master.

Position Read

The Position Read response packet is formatted as shown below.

Position Read Response: rm = 4				
Bits	Description			
63:32	Revolution Count (RC)			
31:6	31:6 Angle			
5:0	SPI Status Byte [5:0]			

Table 37: Position Read Response Packet

The position is updated internally every 20 ns and the position returned by the position read command is the most recently updated internal value, so it may be up to 20 ns old. In addition, the reported position may lag behind the actual sensor position due to signal path filter lag and operating conditions.

If the register read bit (reg) is set in the SPI control word, the 16 most significant bits of the revolution count are replaced by the requested register data. See Register Read on page 52 for more information.

7).

Rev B4, Page 52/55

The Register Data Word contains the value of the reg-

ister at the address specified in the previous Register

Read command packet. This value overwrites the 16 most significant bits of the Revolution Count data (rm ≠

Register Read

The Register Read response packet is formatted as shown below.

Register Read Response: reg = 1			
Bits	Description		
63:48	Register Data Word		
47:6	Data dependant on Read Mode (rm)		
5:0	SPI Status Byte [5:0]		

Table 38: Register Read Response Packet

DESIGN REVIEW: Function Notes

iC-TW39_Y2				
No.	Function, Parameter/Code	Description and Application Notes		
-		None at time of release.		

Table 39: Notes on chip functions regarding iC-TW39 chip revision Y2

48

FOHaus

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A1	2021-12-16		Initial release	all
		1		1
Rel.	Rel. Date*	Chapter	Modification	Page
A2			Refer to the revision history of the release.	
		1		1
Rel.	Rel. Date*	Chapter	Modification	Page
B1	2023-02-01	ELECTRICAL CHARACT.	Items 003, 005, 103, 104, 201, 204, 205: update of conditions and limits	8
		OPERATING REQ: BiSS Interface	Figures 3, 4 updated; Items moved: I001→I007, I008→I016	11
		ABZ OUTPUT	Figure 13 updated	21
		ABZ+UVW OUTPUT	Section added	23
		ORDERING INFORMATION	Section updated	55
	·	•		
Rel.	Rel. Date*	Chapter	Modification	Page
B2	2023-02-08	ELECTRICAL CONNECTIONS	Note added to Figure 9	14
		ANGLE PROCESSOR	Update of Figure 12	18
		•		
Rel.	Rel. Date*	Chapter	Modification	Page
B3	2024-03-15	FEATURES	INL is ±, added 20 MHz SPI interface	1
		DESCRIPTION	Revised	2
		PACKAGING INFORMATION	Update of footnotes: No. 1 added, former No. 8 removed (NPRE preset function is available)	5
		PACKAGE DIMENSIONS	Added information that the magnet must be centered over the TMR element, updated drawing	6
		OPERATING REQUIREMENTS: BiSS Interface	Item I011: update of limit Item I012: added	11
		DEVICE FUNCTIONS	Removed note that chip is not pre-programmed	16
		ANGLE PROCESSOR	Figure 12 updated	18
		BISS/SSI INTERFACE	Updated note on SSI blind write capability	24
		BISS ELECTRONIC DATA SHEET	Section added	29
		BISS PASSTHROUGH MODE	Section added	31
		ABSOLUTE DATA INTERFACE (ADI)	Section added	33
		AUTO CALIBRATION AND ANGLE ERROR CORRECTION	Note added on INL reset	37
		PROGRAMMER	Added register type V Table 29: address 0x001A, bit 4: changed from 0 to reserved address 0x0008: Updated bits 15:11 address 0x0018: Updated bits 5:4	47

Rel.	Rel. Date [*]	Chapter	Modification	Page		
B4	2024-04-23	ABSOLUTE DATA INTERFACE (ADI)	Added parameter ADAPT_CFG.iacal to Table 13 and added parameter description	33, 34		
		PROGRAMMER	Table 29: Registers 0x0200, 0x0202, 0x0400, 0x0700, 0x4004 added	47		

Table 30: addresses 0x002A and 0x002E added

* Release Date format: YYYY-MM-DD

PROGRAMMER

Rev B4, Page 54/55

Haus

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev B4, Page 55/55

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-TW39	32-pin QFN, 5 mm x 5 mm, thickness 0.9 mm, RoHS compliant		iC-TW39 QFN32-5x5
Evaluation Board	PCB module, size approx. 61 mm x 64 mm	Supplied with precision magnets and adapter cable	iC-TW39 EVAL TW39_1M
iC-TW39 GUI		Evaluation software for Windows PC (entry of IC parameters, file storage, and transfer to DUT)	For download link refer to www.ichaus.de/product/ic-tw39/

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: https://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners