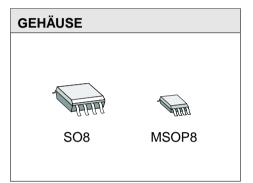
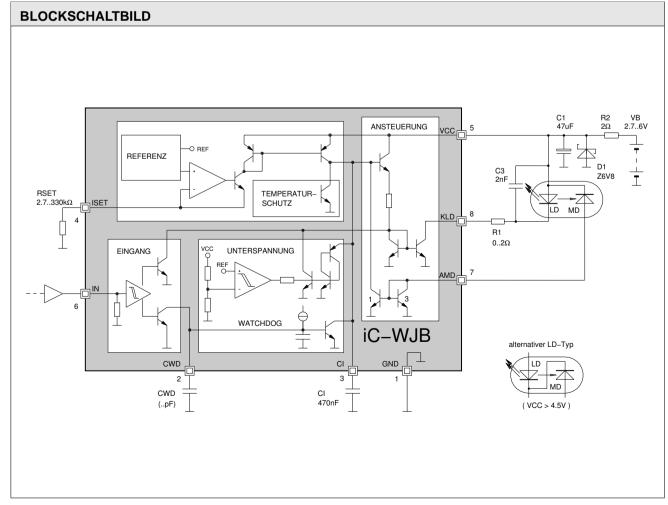
TREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V


Ausgabe E1, Seite 1/12


EIGENSCHAFTEN

- ◆ Laserdiodentreiber für Dauer- und Pulsbetrieb (CW bis 300 kHz) bis 100 mA
- ♦ Mittelwertregelung der Laserleistung
- ♦ Einfache Einstellung der Laserleistung über externen Widerstand
- ♦ Einstellbarer Watchdog überwacht den Schalteingang
- ♦ Weicher Anlauf nach Anlegen der Versorgungsspannung
- ♦ Abschaltung des Laserdiodentreibers bei Übertemperatur und Unterspannung
- ♦ Versorgungsspannung 2.7 bis 6 V passend zu Batteriesystemen mit 2 bis 4 Zellen
- ♦ Integrierter Verpolschutz
- ♦ Einfache Beschaltung

ANWENDUNGEN

- ♦ Batteriebetriebene LD-Module
- ♦ LD-Lichtzeiger (Pointer)

Copyright © 2008 iC-Haus http://www.ichaus.com

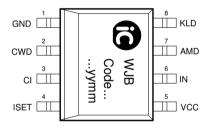
TREIBER-IC FÜR CW-I ASERDIODEN AB 2.7 V

Ausgabe E1, Seite 2/12

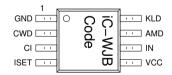
KURZBESCHREIBUNG

Der Baustein iC-WJB ist ein Treiber-IC für Laserdioden im Dauer- und Pulsbetrieb bis 300 kHz. Der weite Spannungsbereich von 2.7 bis 6 V sowie der integrierte Verpolschutz ermöglichen eine Batterieversorgung aus zwei bis vier Zellen (Typ AA oder AAA).

Über den Schalteingang IN wird die Laserdiode angesteuert. Eine Regelung auf den Mittelwert der optischen Laserleistung und integrierte Schutzfunktionen sichern einen zerstörungsfreien Betrieb der empfindlichen Halbleiterlaser.


Das IC beinhaltet Schutzdioden gegen Zerstörung durch ESD, eine Schutzschaltung gegen Übertemperatur und Unterspannung sowie eine Anlaufschaltung für den Laserdiodentreiber, um die Laserdiode beim Einschalten der Versorgungsspannung zu schützen. Kurzzeitige Batterieverpolungen zerstören weder das IC noch die Laserdiode.

Mit einem externen Widerstand an ISET wird die Leistungsregelung an die verwendete Laserdiode angepasst. Der Kondensator an CI bestimmt die Regelzeitkonstante und die Anlaufzeit.


Eine Watchdog-Schaltung überwacht den Schalteingang IN. Bleibt IN länger als die durch den Kondensator an CWD vorgegebene Zeit low, wird der Kondensator der Leistungsregelung an Pin CI entladen. Dadurch wird sichergestellt, dass beim nächsten High-Puls am Eingang IN der Strom durch die Laserdiode nicht unzulässig groß ist.

GEHÄUSE SO8, MSOP8 nach JEDEC

PIN-BELEGUNG SO8

PIN-BELEGUNG MSOP8

PIN-FUNKTIONEN

Nr. Name Funktion

1	GND	Masse
	GIVE	IVIASSE

2 CWD Kondensator für Watchdog

3 CI Kondensator für Leistungsregelung

4 ISET Anschluß für RSET

5 VCC +2.7 bis +6 V Versorgungsspannung

6 IN Schalteingang7 AMD Anode Monitordiode8 KLD Kathode Laserdiode

iC-WJBTREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 3/12

GRENZWERTE

Keine Zerstörung, Funktion nicht garantiert.

Kenn-	Formel-	Benennung	Bedingungen			Einh.
Nr.	zeichen			Min.	Max.	
G001	VCC	Versorgungsspannung		-0.3	6.5	V
G002	VCC	Verpolspannung an VCC	T < 10 s	-3		V
G003	I(VCC)	Strom in VCC	T < 10 s	-500	50	mA
G004	I(CI)	Strom in CI		-4	4	mA
G005	V(KLD)	Spannung an KLD	IN = Io	0	9	V
G006	I(KLD)	Strom in KLD	IN = hi	-4	400	mA
			IN = Io	-4	4	mA
G007	I(AMD)	Strom in AMD		-6	6	mA
G008	I(IN)	Strom in IN		-10	2	mA
G009	I(ISET)	Strom in ISET		-2	2	mA
G010	I(CWD)	Strom in CWD	IN = Io	-2	2	mA
G011	Vd()	ESD-Prüfspannung an CWD, CI, ISET, IN, AMD, KLD	HBM, 100 pF entladen über 1.5 kΩ		1	kV
G012	Tj	Chip-Temperatur		-40	150	°C
G013	Ts	Lager-Temperatur		-40	150	°C

THERMISCHE DATEN

Betriebsbedingungen: VCC = 2.7...6 V

Kenn-	Formel-	Benennung	Bedingungen			Einh.	
Nr.	zeichen	_		Min.	Тур	Max.	
T01	Та	Zulässiger Umgebungstemperaturbereich (erweiterter Temperaturbereich auf Anfrage)		-25		90	°C
T02	. ,	Thermischer Widerstand Chip/Umgebung	SMD-Montage, ohne besondere Kühlflächen			170	K/W

TREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 4/12

KENNDATEN

Betriebsbedingungen: VCC = 2.7...6 V, $RSET = 2.7...27 \text{ k}\Omega$, I(AMD) = 0.15...1.5 mA, $Tj = -25...125 ^{\circ}C$, wenn nicht anders angegeben.

Kenn- Nr.	Formel- zeichen	Benennung	Bedingungen	Min.	Тур	Max.	Einh.
Allgen	neines						
001	VCC	Zulässige Versorgungsspannung		2.7		6	V
002	Idc(VCC)	Versorgungsstrom in VCC	RSET = $5 \text{ k}\Omega$, IN = hi, Idc(KLD) = 40 mA	4	7	13	mA
003	I0(VCC)	Standby-Versorgungsstrom in VCC	RSET = $5 \text{ k}\Omega$, IN = Io, Tj = 27 °C		5		mA
004	lav(VCC)	Versorgungsstrom in VCC (Mittelwert)	$lpk(KLD) = 80 \text{ mA}, f(IN) = 200 \text{ kHz } \pm 20 \%,$ twhi / twlo = 1		9	15	mA
005	tp(IN-KLD)	Verzögerungszeit der Pulsflanke V(IN) zu I(KLD)	IN(hi ↔ lo), V(50 %) : I(50 %)	65		135	ns
006	Pcon	Leistungsaufnahme	VCC = 3 V, V(KLD) ≈ 0.6 V, RSET = 5 k $\Omega,$ Idc(KLD) = 40 mA		50		mW
007	Vc()hi	Clamp Spannung hi an IN, AMD, KLD, CI, CWD, ISET	I() = 2 mA, andere Pins offen Tj = 27 °C	6.2	7.5	10	V V
Lasera	ansteuerung	9					
101	Vs(KLD)	Sättigungsspannung an KLD	IN = hi, I(KLD) = 80 mA Tj = 27 °C		0.11	0.3	V
102	Vs(KLD)	Sättigungsspannung an KLD	IN = hi, I(KLD) = 100 mA			0.4	V
103	I0(KLD)	Reststrom in KLD	IN = Io, V(KLD) = VCC			10	μA
104	V(AMD)	Spannung an AMD	(AMD) = 1.5 mA Tj = 27 °C	0.4	0.84	1.0	V V
105	tr	Strom-Anstiegszeit in KLD	$\begin{array}{l} \text{Imax(KLD)} = 2080\text{mA, lp(): }10\% \rightarrow 90\% \\ \text{Tj} = 27^{\circ}\text{C} \end{array}$		30	100	ns ns
	tf	Strom-Abfallzeit in KLD	$\begin{array}{l} \text{Imax(KLD)} = 2080\text{mA, lp(): }90\% \rightarrow 10\% \\ \text{Tj} = 27^{\circ}\text{C} \end{array}$		20	100	ns ns
107	CR1()	Stromverhältnis I(AMD) / I(ISET)	I(CI) = 0, geschlossener Regelkreis RSET = 2.727 kΩ RSET = 27330 kΩ	2.4 2.4	3 3.6	3.8 5.4	
108	CR2()	Stromverhältnis I(AMD) / I(CI)	V(CI) = 12 V, ISET offen	2.7	3	3.3	
109	TC1()	Temperaturkoeffizient für Stromverhältnis I(AMD) / I(ISET)	I(CI) = 0, geschlossener Regelkreis RSET = 2.727 kΩ RSET = 27330 kΩ		0.01 -0.1	-0.25	%/°C %/°C
Einga	ng IN	,					
201	Vt()hi	Schaltschwelle hi		45		70	%VCC
202	Vt()lo	Schaltschwelle lo		40		65	%VCC
203	Vt()hys	Eingangshysterese	Tj = 27 °C	20	65		mV mV
204	Rin	Pull-Down-Widerstand	V(IN) = -0.3 VVCC Tj = 27 °C	4	10	16	kΩ kΩ
205	V0()	Leerlaufspannung	I(IN) = 0			0.1	V
Refere	enz und Ten	nperaturschutz					
301	V(ISET)	Spannung an ISET	Tj = 27 °C	1.16	1.22	1.28	V
302	CR()	Stromverhältnis I(CI)/I(ISET)	V(CI) = 13.5 V, I(AMD) = 0	0.9	1	1.12	L
303	RSET	Zulässiger Widerstand an ISET (Einstellbereich für Regeleinsatz)		2.7		330	kΩ
304	Toff	Abschalttemperatur		125		150	°C
305	Thys	Temperaturhysterese		10		40	°C
	f und Watch						
401	VCCon	Einschaltschwelle VCC	Tj = 27 °C	2.4	2.6	2.7	V
402	VCCoff	Abschaltschwelle VCC	Tj = 27 °C	2.3	2.5	2.63	V
403	VCChys	Hysterese	VCChys = VCCon - VCCoff	70	100	150	mV
404	Vs(CI)off	Sättigungsspannung an CI bei Unterspannung	$I(CI) = 300 \mu\text{A}, VCC < VCCoff$			1.5	V

iC-WJBTREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 5/12

KENNDATEN

Betriebsbedingungen: VCC = 2.7...6 V, RSET = 2.7...27 k Ω , I(AMD) = 0.15...1.5 mA, Tj = -25...125 °C, wenn nicht anders angegeben.

Kenn-	Formel-	Benennung	Bedingungen			Einh.	
Nr.	zeichen			Min.	Тур	Max.	
405	, ,	Sättigungsspannung an CI für IN = Io	$I(CI) = 300 \mu\text{A}, t(IN = Io) > tp^{(*)}$			1.5	V
406	Isc(CWD)	Pull-Up-Strom an CWD	V(CWD) = 0, $IN = Io$	2		15	μA
407	tpmin	Mindestansprechzeit Watchdog	IN = Io, CWD offen Tj = 27 °C	10	25	45	μs μs
408	Kwd ^(*)	Konstante zur Berechnung der Ansprechzeit Watchdog	IN = Io Tj = 27 °C	0.19	0.25	0.57	μs/pF μs/pF

 $^{^{(*)}}$ tp = (C(CWD) * Kwd) + tpmin (siehe auch Applikationshinweise)

TREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 6/12

APPLIKATIONSHINWEISE

Einstellung der Laserleistung

iC-WJB kann an CW-Laserdioden bis etwa 40 mW angepasst werden. Ab ca. 4.5 V Versorgungsspannung können auch Typen mit gemeinsamer Kathode für Laser- und Monitordiode verwendet werden.

Für die Anpassung an die Empfindlichkeit der Monitordiode und zur Einstellung der gewünschten optischen Laserleistung dient der Pin ISET. An diesem Pin wird der Sollwert für die Mittelwertregelung des Monitorfotostromes vorgegeben.

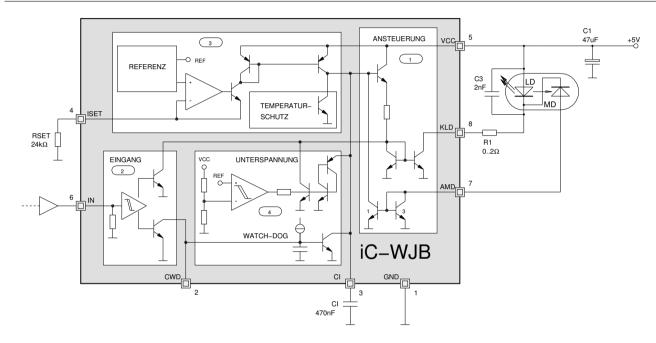


Bild 1: Beschaltung für Laserdioden mit gemeinsamer Kathode

Zur Berechnung des benötigten Stroms an ISET wird die mittlere optische Laserleistung bestimmt:

$$P_{av} = P_{peak} * \frac{t_{whi}}{T}$$

mit Spitzenwert Ppeak und Puls-/Periodendauer twhi/T.

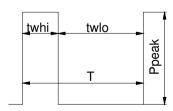


Bild 2: Tastverhältnis

Beispiel CW-Betrieb

 P_{cw} = 1 mW (Pin IN an VCC, Pin CWD offen); LD: max. optische Ausgangsleistung 3 mW, Monitordiode mit 0.75 mA bei 3 mW.

Bei $P_{av} = P_{cw} = 1 \text{ mW}$ ist der Monitorfotostrom 0.25 mA und RSET wird damit zu:

$$RSET = \frac{CR1 * V(ISET)}{I_{av}(AMD)} = \frac{3 * 1.22 V}{0.25 mA} = 14.64 k\Omega$$

mit den Kenndaten Nr. 301 für V(ISET) und Nr. 107 für das Übersetzungsverhältnis CR1.

Beispiel Pulsbetrieb

Tastverhältnis $t_{whi}/T = 20 \%$ und $P_{peak} = 3 \text{ mW}$; LD: wie zuvor, max. optische Ausgangsleistung 3 mW, Monitordiode mit 0.75 mA bei 3 mW;

Das Tastverhältnis bestimmt die mittlere optische Leistung P_{av} zu 0.6 mW; der mittlere Monitorfotostrom I_{av} beträgt dann 0.15 mA und für RSET folgt:

$$RSET = \frac{CR1 * V(ISET)}{I_{av}(AMD)} = \frac{3 * 1.22 V}{0.15 mA} = 9.4 k\Omega$$

TREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 7/12

mit den Kenndaten Nr. 301 für V(ISET) und Nr. 107 für das Übersetzungsverhältnis CR1.

Mittelwertregelung

Die Regelung der mittleren optischen Laserleistung erfordert einen Kondensator an Pin CI. Dieser Kondensator dient der Mittelwertbildung und muss der gewählten Pulsfrequenz sowie dem an ISET vorgegebenen Ladestrom angepasst werden. Die Zusammenhänge sind in beiden Fällen linear, d. h. mit kleiner werdender Pulsfrequenz oder mit zunehmendem Strom aus ISET muss der Kondensator CI proportional vergrößert werden:

$$CI \ge \frac{440*I(ISET)}{f*V(ISET)} = \frac{440}{f*RSET}$$

Beispiel

Pulsfrequenz 100 kHz, RSET = $10 \text{ k}\Omega$: CI = 440 nF, gewählt 470 nF.

Anderenfalls wird durch das Aufladen des Kondensators CI während der Pulspausen (mit I(ISET) = 1.22 V / RSET) das Mittelwertpotenzial überhöht und die Laserdiode beim nächsten Puls eventuell zerstört. Der Kondensator CI ist richtig dimensioniert, wenn der Strom durch die Laserdiode und das optische Ausgangssignal keine Überhöhung nach der Einschaltflanke aufweisen.

Im eingeschwungenen Zustand und für ein Tastverhältnis von 50 % (Puls/Pause = 1:1) zeigen sich an den IC-Pins Signale wie in Bild 3.

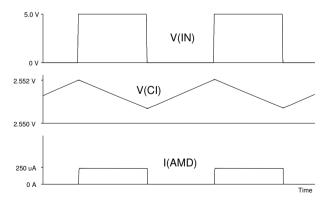


Bild 3: Eingeschwungene Mittelwertregelung, f(IN)= 100 kHz (1:1), CI = 470 nF, RSET = 10 k Ω

Die entsprechenden Signale für ein Tastverhältnis von 20 % zeigt Bild 4. Deutlich wird der Einfluss des Tastverhältnisses auf den Spitzenwert des zum Laserstrom proportionalen Monitorstroms. Der durch die Regelung konstant gehaltene Mittelwert (RSET unverändert) bedeutet einen um den Faktor 2.5 erhöhten Spitzenwert.

Das Tastverhältnis, für das RSET dimensioniert wurde, sollte daher möglichst konstant sein.

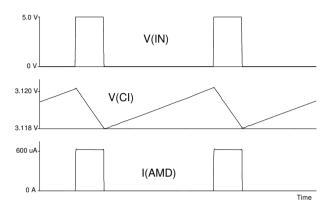


Bild 4: Eingeschwungene Mittelwertregelung, f(IN)= 100 kHz (1:4), CI = 470 nF, RSET = 10 k Ω

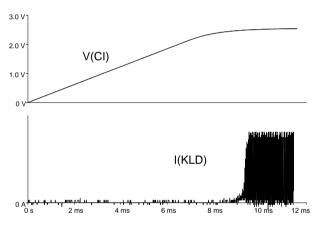


Bild 5: Einschaltverhalten, f(IN) = 100 kHz (1:1), CI = 470 nF, RSET = 10 k Ω

Ein- und Ausschaltverhalten

Der Kondensator CI bestimmt auch die Anlaufzeit bis zum eingeschwungenen Laserpulsbetrieb nach Einschalten der Versorgungsspannung VCC oder nach einer Entladung von CI durch den Watchdog.

Zur Abschätzung der Anlaufzeit (Bild 5) gilt:

$$T_{on} \approx \frac{1.7 \ V * CI}{I(ISET)} = \frac{1.7 \ V * CI * RSET}{1.22 \ V}$$

Beispiel

CI = 470 nF, RSET = 10 k Ω : T_{on} \approx 6.5 ms

Den Beginn des Laserbetriebs zeigt aufgelöst Bild 6, das Ausschaltverhalten Bild 7. Der Einsatz der Unterspannungserkennung zeigt sich am Abnehmen der Spannung an CI und dem Ausbleiben der Laserpulse.

TREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 8/12

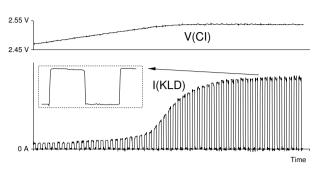


Bild 6: Einschaltverhalten aufgelöst, f(IN) = 100 kHz(1:1), CI = 470 nF, $RSET = 10 \text{ k}\Omega$

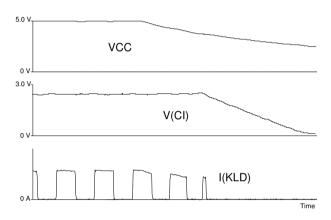


Bild 7: Ausschaltverhalten, f(IN) = 100 kHz (1:1), CI = 470 nF, RSET = 10 k Ω

Watchdog

Der Watchdog sorgt dafür, dass bei längeren Pulspausen an IN der Kondensator CI entladen wird. Während der Pulspausen steigt das Potenzial an CI um Δ V an (siehe Bild 3):

$$\Delta V = \frac{I(ISET) * t_{wlo}}{CI}$$

Das Entladen des Kondensators CI durch den Watchdog stellt sicher, dass die Laserdiode beim nächsten Puls nicht durch einen zu großen Einschaltstrom zerstört wird.

Der Kondensator CWD sollte so dimensioniert werden, dass die Ansprechzeit t_p des Watchdogs etwas größer ist, als die Pulspausendauer t_{wlo} des Eingangssignals. Dadurch spricht der Watchdog gerade noch nicht an.

Für Ansprechzeiten tp größer als tpmin gilt:

$$CWD = \frac{t_p - t_{pmin}}{K_{wd}}$$

mit t_{pmin} und K_{wd} aus den Kenndaten Nr. 407, 408.

Bild 8 zeigt die Signalverläufe im Normalbetrieb, ohne Ansprechen des Watchdogs. Das Potenzial an CWD

steigt während der Pulspausen an, erreicht jedoch nicht die Ansprechschwelle des Watchdogs.

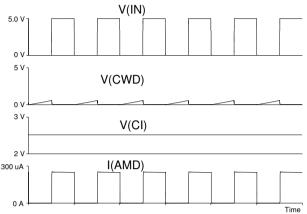


Bild 8: Watchdog, CWD offen, f(IN) = 100 kHz (1:1), CI = 470 nF, RSET = $10 \text{ k}\Omega$

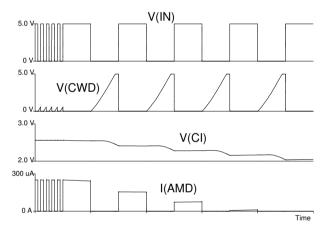


Bild 9: Watchdog, CWD offen, f(IN) = 100 kHz \rightarrow 10 kHz (1:1), CI = 470 nF, RSET = 10 k Ω

Bild 9 zeigt die Verhältnisse, wenn die Eingangsfrequenz von 100 kHz auf 10 kHz reduziert wird. Die Pulspausen sind länger als die Ansprechzeit des Watchdogs. Der Watchdog beginnt den Kondensator CI strombegrenzt zu entladen. Die verbleibende Ladezeit in den Pulspausen vor Eingriff des Watchdogs genügt jedoch nicht, um das ursprüngliche Potenzial an CI zu erhalten. Das Potenzial sinkt deshalb in Schritten bis zur Sättigungsspannung Vs(CI)_{wd} (Kenndaten Nr. 405).

Der Watchdog bewahrt also die Laserdiode vor Zerstörung, wenn sich die Eingangssignale so ändern, dass der Kondensator CI für die Mittelwertbildung nicht mehr ausreicht.

Weiterhin erlaubt das Eingreifen des Watchdogs große Pulspausen sowie eine Ansteuerung der Laserdiode mit Pulspaketen.

TREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 9/12

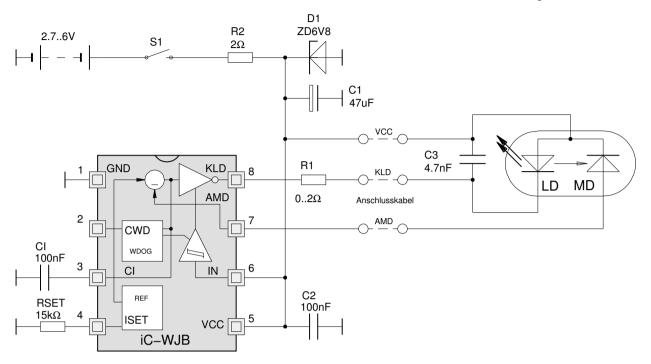


Bild 10: CW-Betrieb und Ansteuerung der Laserdiode über Kabel

CW-Betrieb

Für CW-Betrieb kann der Pulsfrequenzeingang mit VCC verbunden werden. Der Pin CWD bleibt offen, denn der Kondensator für die Watchdog-Schaltung wird nicht benötigt. Für den Kondensator CI der Mittelwertregelung empfiehlt sich ein Wert um 100 nF.

Anschluss der Laserdiode über Kabel

Als Schutzmaßnahme für die Laserdiode gegen Beschädigung durch ESD oder Einschwingvorgänge empfiehlt sich ein Kondensator von ca. 1 bis 10 nF parallel zur Laserdiode. Dieser Kondensator sollte unmittelbar an der Laserdiode angebracht sein, keinesfalls am Beginn der Zuleitung.

Ein Serienwiderstand von ca. $2\,\Omega$ am Pin KLD verringert die IC-Verlustleistung und dämpft eventuelle Re-

sonanzen im Lastkreis, verursacht durch die induktiv wirkende Zuleitung. Dieser Widerstand ist grundsätzlich sinnvoll, auch wenn kein Kabel verwendet wird.

Wird die Zuführung zur Laserdiode über eine Platine geführt, sollte, auch bei nur wenigen Zentimetern Länge, die Hinleitung VCC und die Rückleitung nach KLD parallel verlaufen, d. h. dicht nebeneinander liegen.

Zusätzliche Schutzelemente zum Kappen von kräftigen positiven als auch negativen Spannungsspitzen können sinnvoll sein, u. a. dann wenn Schalter in einer induktiv wirkenden Akku-Zuleitung prellen. In Frage kommen hierfür die Elemente D1 und R1 nach Bild 10.

TREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 10/12

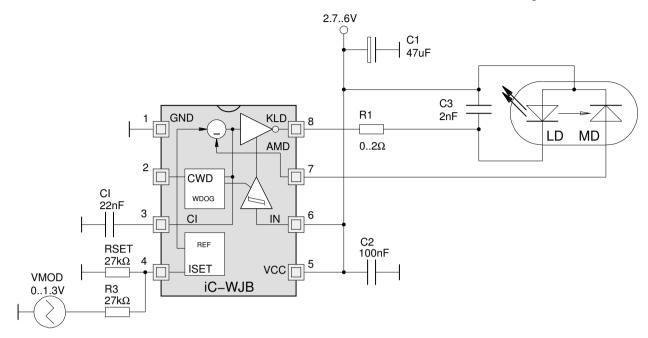


Bild 11: Analog-Modulation im CW-Betrieb

Analog-Modulation im CW-Betrieb

Die Modulations-Eckfrequenz wird vom Kondensator CI sowie vom Arbeitspunkt bestimmt, der mit dem Widerstand RSET eingestellt ist. Mit CI = $100\,\text{nF}$ und RSET = R3 = $15\,\text{k}\Omega$ liegt die Eckfrequenz bei etwa $30\,\text{kHz}$, mit CI = $22\,\text{nF}$ und gleichem Widerstand bei etwa $150\,\text{kHz}$.

Auch durch Beschaltung mit einer Stromquelle, z.B. als Operationsverstärker mit Stromausgang (OTA), kann die Laserleistung moduliert werden. Damit beim

Einschalten der Versorgungsspannung der OTA-Beschaltung der Strom für den Pin ISET begrenzt ist, sollte der OTA-Ausgang am Fußpunkt von RSET angeschlossen werden (anstelle von GND). Für die Dimensionierung des Kondensators CI muss der an ISET maximal auftretende Strom berücksichtigt werden.

Platinenlayout

Die Masse-Anschlüsse der externen Komponenten CI, CWD und RSET müssen direkt am IC mit dem Anschluss GND verbunden werden.

DEMO-BOARD

Die Bausteine iC-WJ/WJZ/WJB werden mit einem Demo-Board zu Testzwecken bemustert. Die folgen-

den Bilder zeigen die Schaltung sowie die Oberseite der Testplatine.

TREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 11/12

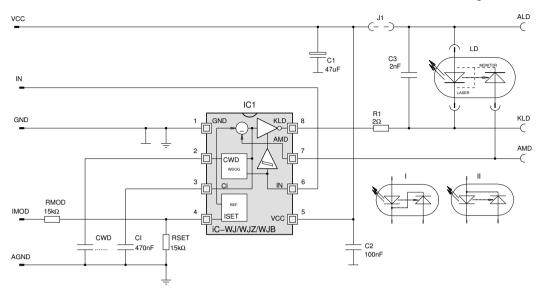


Bild 12: Schaltplan des Demo-Boards

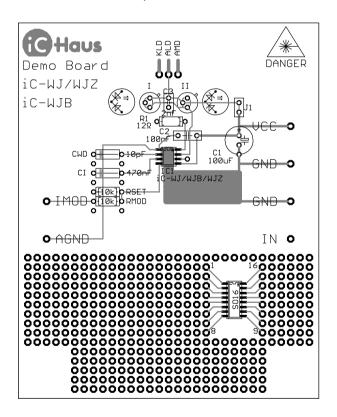


Bild 13: Demo-Board (Bestückungsseite)

Die vorliegende Spezifikation betrifft ein neu entwickeltes Produkt. iC-Haus behält sich daher das Recht vor, Daten ohne weitere Ankündigung zu ändern. Die aktuellen Daten können bei iC-Haus abgefragt werden.

Ein Nachdruck dieser Spezifikation – auch auszugsweise – ist nur mit unserer schriftlichen Zustimmung und unter genauer Quellenangabe zulässig. Die angegebenen Daten dienen ausschließlich der Produktbeschreibung. Dies gilt insbesondere auch für die angegebenen Verwendungsmöglichkeiten/Einsatzbereiche des Produktes.

Eine Garantie hinsichtlich der Eignung oder Zuverlässigkeit des Produktes für die konkret vorgesehene Verwendung wird von iC-Haus nicht übernommen.

iC-Haus überträgt an dem Produkt kein Patent, Copyright oder sonstiges Schutzrecht.

Für die Verletzung etwaiger Patent- und/oder sonstiger Schutzrechte Dritter, die aus der Ver- oder Bearbeitung des Produktes und/oder der sonstigen konkreten Verwendung des Produktes resultieren, übernimmt iC-Haus keine Haftung.

Unsere Entwicklungen, IPs, Schaltungsprinzipien und angebotenen Integrierten Schaltkreise sind grundsätzlich geeignet, naheliegend und vorgesehen für einen zweckentsprechenden Einsatz in technischen Applikationen, z. B. in Geräten und Systemen und in beliebigen technischen Einrichtungen, soweit sie nicht bestehende Schutzrechte verletzen. Prinzipiell sind die Verwendungsmöglichkeiten technisch nicht beschränkt und beziehen sich beispielsweise auf Produkte des Warenverzeichnisses für die Außenhandelsstatistik, Ausgabe 2008 und folgende, jährlich herausgegeben vom Statistischen Bundesamt, Wiesbaden, oder auf ein beliebiges Produkt des Produktkatalogs der Hannover-Messe 2007 und folgender.

Eine zweckentsprechende Applikation unserer veröffentlichten Entwicklungen verstehen wir als Stand der Technik, die nicht mehr als erfinderisch im Sinne des Patentgesetzes gelten kann. Unsere expliziten Applikationshinweise sind nur als Ausschnitt der möglichen, besonders vorteilhaften Anwendungen zu verstehen.

iC-WJBTREIBER-IC FÜR CW-LASERDIODEN AB 2.7 V

Ausgabe E1, Seite 12/12

BESTELLINFORMATION

Тур	Gehäuse	Bestellbezeichnung
:C WID	500	C WID COO
iC-WJB	SO8 MSOP8	iC-WJB SO8 iC-WJB MSOP8
WJB-Demo-Board		iC-WJB EVAL WJ1D

Technischen Support und Auskünfte über Preise und Lieferzeiten geben:

iC-Haus GmbH Tel.: (0 61 35) 92 92-0
Am Kuemmerling 18 Fax: (0 61 35) 92 92-192
55294 Bodenheim Web: http://www.ichaus.com

E-Mail: sales@ichaus.com

Autorisierte Distributoren nach Region: http://www.ichaus.de/support_distributors.php